restnet50代码pytorch
时间: 2023-04-25 08:02:37 浏览: 211
以下是一个简单的ResNet50代码示例,使用PyTorch框架:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.models as models
# 加载预训练的ResNet50模型
resnet50 = models.resnet50(pretrained=True)
# 替换最后一层全连接层
num_ftrs = resnet50.fc.in_features
resnet50.fc = nn.Linear(num_ftrs, 10) # 假设我们有10个类别
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(resnet50.parameters(), lr=.001, momentum=.9)
# 训练模型
for epoch in range(10):
running_loss = .
for i, data in enumerate(trainloader, ):
inputs, labels = data
optimizer.zero_grad()
outputs = resnet50(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 200 == 1999:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 200))
running_loss = .
print('Finished Training')
```
这个代码示例加载了预训练的ResNet50模型,并将其用于一个分类任务。我们替换了最后一层全连接层,以适应我们的数据集。然后,我们定义了损失函数和优化器,并使用训练数据训练模型。在每个epoch结束时,我们输出训练损失。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![ipynb](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)