pointrend pytorch
时间: 2023-05-09 11:02:00 浏览: 124
pytorch
PointRend是Facebook AI Research在2019年提出的一种借助点采样(point sampling)技术提升实例分割(instance segmentation)性能的方法,这一方法被应用于Mask R-CNN模型中,提高了实例分割任务的表现。
PointRend的核心思想是通过点采样(point sampling)的方式对实例的局部区域进行特征提取,然后再对这些局部特征进行全局汇聚来获取最终的实例特征表示。具体地,PointRend将Mask R-CNN的RoIAlign操作替换为PointRoIAlign操作,这样可以在每个采样点处提取出一个局部特征。然后在这些局部特征上,PointRend使用自适应池化(adaptive pooling)的方式,将局部特征汇聚到一个全局表达中,这个表达即为最终的实例特征表示。
PointRend在实验中表现出了很好的性能,特别是在实例大小差距较大的情况下效果最为显著。目前,PointRend已经被整合到Facebook AI Research开源的detectron2库中,可以直接使用pytorch实现。
阅读全文