tf.image.non_max_suppression

时间: 2023-04-25 20:02:40 浏览: 82
tf.image.non_max_suppression是TensorFlow中的一个函数,用于执行非最大值抑制操作。它可以用于在图像中检测物体时,去除重叠的边界框,只保留最有可能包含物体的边界框。该函数的输入是一组边界框和它们对应的置信度分数,输出是一组被保留的边界框的索引。
相关问题

yolov5代码详解yolo.py

yolov5是一个目标检测算法,yolo.py是其中的一个核心文件,主要实现了模型的构建和训练。下面是yolo.py的代码详解: 1. 导入必要的库和模块 ```python import torch import torch.nn as nn import numpy as np from collections import OrderedDict from utils.general import anchors, autopad, scale_img, check_anchor_order, check_file, check_img_size, \ check_requirements, non_max_suppression, xyxy2xywh, xywh2xyxy, plot_one_box from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info from models.common import Conv, DWConv ``` 2. 定义YOLOv5模型 ```python class YOLOv5(nn.Module): def __init__(self, nc=80, anchors=(), ch=(), inference=False): # model, input channels, number of classes super(YOLOv5, self).__init__() self.nc = nc # number of classes self.no = nc + 5 # number of outputs per anchor self.nl = len(anchors) # number of detection layers self.na = len(anchors[0]) // 2 # number of anchors per layer self.grid = [torch.zeros(1)] * self.nl # init grid a = torch.tensor(anchors).float().view(self.nl, -1, 2) self.register_buffer('anchors', a) # shape(nl,na,2) self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2) self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv self.inference = inference # inference flag ``` 3. 定义前向传播函数 ```python def forward(self, x): self.img_size = x.shape[-2:] # store image size x = self.forward_backbone(x) # backbone z = [] # inference output for i in range(self.nl): x[i] = self.m[i](x[i]) # conv bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() if not self.training: # inference if self.inference == 'tflite': z.append(x[i].detach().cpu()) # inference tflite else: io = x[i].sigmoid() io[..., 4:] = io[..., 4:] * io[..., 4:].mean(1, keepdim=True) * self.nc # sigmoid obj,class scores bxy = io[..., :2].sigmoid() * 2. - 0.5 + self.grid[i] # xy bwh = io[..., 2:4].exp() * self.anchor_grid[i] # wh xywh = torch.cat((bxy, bwh), -1).view(bs, -1, 4) * self.stride[i] # xywh (center+offset) relative to image size z.append(xywh.view(bs, -1, self.no), ) # xywhn return x if self.training else (torch.cat(z, 1), x) ``` 4. 定义后向传播函数 ```python def forward_backbone(self, x): x = self.conv1(x) x = self.bn1(x) x = self.act1(x) x = self.pool1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) x = self.layer6(x) x = self.layer7(x) x = self.layer8(x) x = self.layer9(x) return x ``` 以上就是yolo.py的代码详解,其中包括了YOLOv5模型的定义和前向传播函数的实现。相关问题如下: 相关问题: 1. YOLOv5模型的输入和输出是什么? 2. YOLOv5模型的训练过程是怎样的? 3. YOLOv5模型中的anchors是什么?

怎么在TensorFlow框架加载yolov3_tiny模型识别物品

要在TensorFlow框架加载yolov3_tiny模型进行物品识别,需要进行以下步骤: 1. 下载yolov3_tiny模型的权重文件和配置文件,可以在Darknet官网或GitHub上找到。 2. 将权重文件和配置文件转换成TensorFlow可用的格式,可以使用如下命令行: ``` python convert_weights.py --weights_file yolov3-tiny.weights --output_graph yolov3-tiny.pb --config_file yolov3-tiny.cfg ``` 3. 在TensorFlow中加载模型,可以使用如下代码: ``` import tensorflow as tf # 加载模型 model = tf.keras.models.load_model('yolov3-tiny.pb') # 进行物品识别 predictions = model.predict(images) ``` 其中,images为待识别的图像数据。需要根据模型配置文件中定义的输入尺寸对图像进行预处理,并将其转换为模型所需的输入格式。 4. 根据模型输出,解析出物品识别结果。yolov3_tiny模型的输出是一个Tensor,需要进行后处理才能得到物品的位置和类别信息。可以使用如下代码: ``` def post_process(predictions, conf_threshold, iou_threshold): # 对预测结果进行后处理 boxes, confidences, class_ids = decode_predictions(predictions, conf_threshold, iou_threshold) return boxes, confidences, class_ids def decode_predictions(predictions, conf_threshold, iou_threshold): # 解码预测结果 boxes, confidences, class_ids = [], [], [] for prediction in predictions: # 对每个预测结果进行解码 box, confidence, class_id = decode_prediction(prediction, conf_threshold, iou_threshold) if box is not None: boxes.append(box) confidences.append(confidence) class_ids.append(class_id) return boxes, confidences, class_ids def decode_prediction(prediction, conf_threshold, iou_threshold): # 解码单个预测结果 boxes = prediction[..., :4] confidences = prediction[..., 4] class_ids = prediction[..., 5:] max_confidence = tf.reduce_max(confidences, axis=-1) mask = max_confidence >= conf_threshold boxes = tf.boolean_mask(boxes, mask) confidences = tf.boolean_mask(max_confidence, mask) class_ids = tf.boolean_mask(class_ids, mask) indices = tf.image.non_max_suppression(boxes, confidences, max_output_size=100, iou_threshold=iou_threshold) boxes = tf.gather(boxes, indices) confidences = tf.gather(confidences, indices) class_ids = tf.gather(class_ids, indices) if tf.shape(boxes)[0] > 0: box = boxes[0].numpy().tolist() confidence = confidences[0].numpy().tolist() class_id = tf.argmax(class_ids[0]).numpy().tolist() return box, confidence, class_id else: return None, None, None ``` 其中,conf_threshold和iou_threshold分别为置信度阈值和非极大值抑制阈值,可以根据实际应用进行调整。 5. 可以根据解析出的物品位置和类别信息,将其可视化并输出。可以使用如下代码: ``` def visualize(image, boxes, class_ids): # 可视化结果 for box, class_id in zip(boxes, class_ids): x1, y1, x2, y2 = box cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 2) cv2.putText(image, str(class_id), (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) cv2.imshow('result', image) cv2.waitKey(0) ``` 其中,image为待识别的原始图像,boxes和class_ids为解析出的物品位置和类别信息。需要使用OpenCV等库将结果可视化。
阅读全文

相关推荐

最新推荐

recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

j link 修复问题套件

j link 修复问题套件
recommend-type

C#实现modbusRTU(实现了01 3 05 06 16等5个功能码)

资源包括 modbuspoll 虚拟串口软件vspd modsim32和modscan32 以及C#版的modbus程序 打开modsim32连接串口2 打开程序连接串口3 即可和Mdosim32进行读写通信。 本代码为C# winform程序,实现了01 03 05 06 16总共五个功能码的功能。 备注: 01功能码:读线圈开关。 03功能码: 读寄存器值。 05功能码:写线圈开关。 06功能码:写单个寄存器值。 16功能码:写多个寄存器值。
recommend-type

【创新未发表】基于matlab粒子群算法PSO-PID控制器优化【含Matlab源码 9659期】.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,尽我所能,为你服务; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化PID系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化PID 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化PID 4.4.3 灰狼算法GWO/狼群算法WPA优化PID 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化PID 4.4.5 萤火虫算法FA/差分算法DE优化PID 4.4.6 其他优化算法优化PID
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。