tf.image.non_max_suppression
时间: 2023-04-25 20:02:40 浏览: 82
tf.image.non_max_suppression是TensorFlow中的一个函数,用于执行非最大值抑制操作。它可以用于在图像中检测物体时,去除重叠的边界框,只保留最有可能包含物体的边界框。该函数的输入是一组边界框和它们对应的置信度分数,输出是一组被保留的边界框的索引。
相关问题
yolov5代码详解yolo.py
yolov5是一个目标检测算法,yolo.py是其中的一个核心文件,主要实现了模型的构建和训练。下面是yolo.py的代码详解:
1. 导入必要的库和模块
```python
import torch
import torch.nn as nn
import numpy as np
from collections import OrderedDict
from utils.general import anchors, autopad, scale_img, check_anchor_order, check_file, check_img_size, \
check_requirements, non_max_suppression, xyxy2xywh, xywh2xyxy, plot_one_box
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info
from models.common import Conv, DWConv
```
2. 定义YOLOv5模型
```python
class YOLOv5(nn.Module):
def __init__(self, nc=80, anchors=(), ch=(), inference=False): # model, input channels, number of classes
super(YOLOv5, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.nl = len(anchors) # number of detection layers
self.na = len(anchors[0]) // 2 # number of anchors per layer
self.grid = [torch.zeros(1)] * self.nl # init grid
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
self.register_buffer('anchors', a) # shape(nl,na,2)
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
self.inference = inference # inference flag
```
3. 定义前向传播函数
```python
def forward(self, x):
self.img_size = x.shape[-2:] # store image size
x = self.forward_backbone(x) # backbone
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]) # conv
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if not self.training: # inference
if self.inference == 'tflite':
z.append(x[i].detach().cpu()) # inference tflite
else:
io = x[i].sigmoid()
io[..., 4:] = io[..., 4:] * io[..., 4:].mean(1, keepdim=True) * self.nc # sigmoid obj,class scores
bxy = io[..., :2].sigmoid() * 2. - 0.5 + self.grid[i] # xy
bwh = io[..., 2:4].exp() * self.anchor_grid[i] # wh
xywh = torch.cat((bxy, bwh), -1).view(bs, -1, 4) * self.stride[i] # xywh (center+offset) relative to image size
z.append(xywh.view(bs, -1, self.no), ) # xywhn
return x if self.training else (torch.cat(z, 1), x)
```
4. 定义后向传播函数
```python
def forward_backbone(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.pool1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
x = self.layer7(x)
x = self.layer8(x)
x = self.layer9(x)
return x
```
以上就是yolo.py的代码详解,其中包括了YOLOv5模型的定义和前向传播函数的实现。相关问题如下:
相关问题:
1. YOLOv5模型的输入和输出是什么?
2. YOLOv5模型的训练过程是怎样的?
3. YOLOv5模型中的anchors是什么?
怎么在TensorFlow框架加载yolov3_tiny模型识别物品
要在TensorFlow框架加载yolov3_tiny模型进行物品识别,需要进行以下步骤:
1. 下载yolov3_tiny模型的权重文件和配置文件,可以在Darknet官网或GitHub上找到。
2. 将权重文件和配置文件转换成TensorFlow可用的格式,可以使用如下命令行:
```
python convert_weights.py --weights_file yolov3-tiny.weights --output_graph yolov3-tiny.pb --config_file yolov3-tiny.cfg
```
3. 在TensorFlow中加载模型,可以使用如下代码:
```
import tensorflow as tf
# 加载模型
model = tf.keras.models.load_model('yolov3-tiny.pb')
# 进行物品识别
predictions = model.predict(images)
```
其中,images为待识别的图像数据。需要根据模型配置文件中定义的输入尺寸对图像进行预处理,并将其转换为模型所需的输入格式。
4. 根据模型输出,解析出物品识别结果。yolov3_tiny模型的输出是一个Tensor,需要进行后处理才能得到物品的位置和类别信息。可以使用如下代码:
```
def post_process(predictions, conf_threshold, iou_threshold):
# 对预测结果进行后处理
boxes, confidences, class_ids = decode_predictions(predictions, conf_threshold, iou_threshold)
return boxes, confidences, class_ids
def decode_predictions(predictions, conf_threshold, iou_threshold):
# 解码预测结果
boxes, confidences, class_ids = [], [], []
for prediction in predictions:
# 对每个预测结果进行解码
box, confidence, class_id = decode_prediction(prediction, conf_threshold, iou_threshold)
if box is not None:
boxes.append(box)
confidences.append(confidence)
class_ids.append(class_id)
return boxes, confidences, class_ids
def decode_prediction(prediction, conf_threshold, iou_threshold):
# 解码单个预测结果
boxes = prediction[..., :4]
confidences = prediction[..., 4]
class_ids = prediction[..., 5:]
max_confidence = tf.reduce_max(confidences, axis=-1)
mask = max_confidence >= conf_threshold
boxes = tf.boolean_mask(boxes, mask)
confidences = tf.boolean_mask(max_confidence, mask)
class_ids = tf.boolean_mask(class_ids, mask)
indices = tf.image.non_max_suppression(boxes, confidences, max_output_size=100, iou_threshold=iou_threshold)
boxes = tf.gather(boxes, indices)
confidences = tf.gather(confidences, indices)
class_ids = tf.gather(class_ids, indices)
if tf.shape(boxes)[0] > 0:
box = boxes[0].numpy().tolist()
confidence = confidences[0].numpy().tolist()
class_id = tf.argmax(class_ids[0]).numpy().tolist()
return box, confidence, class_id
else:
return None, None, None
```
其中,conf_threshold和iou_threshold分别为置信度阈值和非极大值抑制阈值,可以根据实际应用进行调整。
5. 可以根据解析出的物品位置和类别信息,将其可视化并输出。可以使用如下代码:
```
def visualize(image, boxes, class_ids):
# 可视化结果
for box, class_id in zip(boxes, class_ids):
x1, y1, x2, y2 = box
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(image, str(class_id), (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.imshow('result', image)
cv2.waitKey(0)
```
其中,image为待识别的原始图像,boxes和class_ids为解析出的物品位置和类别信息。需要使用OpenCV等库将结果可视化。
阅读全文