手写数字识别tkinter库源码
时间: 2023-05-14 12:03:42 浏览: 169
用于手写识别的源代码
4星 · 用户满意度95%
手写数字识别是一种基于机器学习的数字识别技术,可以识别用户手写的数字。使用tkinter库可以方便地创建用户界面,允许用户输入手写数字,然后将其传递给识别算法进行识别。以下是tkinter库源码的实现。
首先,导入必要的库,包括tkinter,PIL和numpy。
```
from tkinter import *
from PIL import Image, ImageDraw
import numpy as np
```
然后,创建一个Canvas对象和一个ImageDraw对象来绘制用户的手写数字。设置Canvas的尺寸和颜色,以及ImageDraw对象的大小和颜色。
```
master = Tk()
w = Canvas(master, width=280, height=280, bg='white')
w.grid(row=0, column=0, columnspan=4)
image = Image.new("L", (280, 280), 255)
draw = ImageDraw.Draw(image)
```
接下来,创建一个Label对象来显示识别结果。在创建时,设置它的文本为“识别结果:”和字体。
```
label = Label(master, text="识别结果:", font=("Helvetica", 12))
label.grid(row=1, column=0, sticky=W)
```
然后,定义一个函数来处理用户在Canvas上的绘画操作,包括移动、点击和释放。该函数将把用户的输入转换为一个28x28的数字数组,并将其打印出来。
```
def paint(event):
x1, y1 = (event.x - 14), (event.y - 14)
x2, y2 = (event.x + 14), (event.y + 14)
w.create_oval(x1, y1, x2, y2, fill='black', width=20)
draw.ellipse([x1, y1, x2, y2], fill='black', width=20)
def recognition():
im = image.resize((28, 28))
im_array = np.array(im)
im_array = im_array.reshape((1, 28, 28))
print(im_array)
```
最后,将绘画函数和识别函数添加到Canvas和Button对象的响应事件中。
```
w.bind('<B1-Motion>', paint)
button = Button(master, text="识别", command=recognition)
button.grid(row=2, column=2, padx=10, pady=10)
mainloop()
```
通过使用tkinter库,可以方便地创建一个GUI应用程序,用户可以在其中输入手写数字,然后使用机器学习算法进行识别。这种方法为用户提供了一种交互式和直观的数字识别方式。
阅读全文