给定有限集合上二元关系的关系矩阵,求由其诱导出的等价关系的关系矩阵。
时间: 2024-02-29 14:55:14 浏览: 228
给定有限集合 $X$ 上二元关系的关系矩阵 $R$,其中 $R_{i,j}=1$ 表示 $i$ 和 $j$ 有关系,否则 $R_{i,j}=0$。我们可以通过该关系矩阵构造出等价关系的关系矩阵。
具体地,我们可以用传递闭包算法(Transitive Closure)来求得该关系对应的等价关系。传递闭包算法的基本思想是:从给定关系的矩阵出发,通过迭代的方式不断扩展关系,直到关系满足传递性为止。
我们定义 $R^{(k)}$ 表示 $R$ 的第 $k$ 次幂,即 $R^{(k)}=R\times R\times...\times R$($k$ 个 $R$ 相乘)。显然,$R^{(1)}=R$。我们可以依次求出 $R^{(2)},R^{(3)},...$ 直到 $R^{(n)}$ 不再发生变化为止,此时 $R^{(n)}$ 就是关系 $R$ 的传递闭包。
求得传递闭包后,我们可以根据等价关系的定义,构造出其关系矩阵 $E$。具体地,对于 $x,y\in X$,如果 $x$ 和 $y$ 在等价关系下等价,则 $E_{x,y}=1$,否则 $E_{x,y}=0$。
因此,等价关系的关系矩阵 $E$ 可以通过以下公式计算得到:
$$E=R^{(n)}$$
其中 $n$ 是满足 $R^{(n)}=R^{(n+1)}$ 的最小正整数。
阅读全文