class SpiralIterator: def init(self, source, x=810, y=500, length=None): self.source = source self.row = np.shape(self.source)[0]#第一个元素是行数 self.col = np.shape(self.source)[1]#第二个元素是列数 if length: self.length = min(length, np.size(self.source)) else: self.length = np.size(self.source) if x: self.x = x else: self.x = self.row // 2 if y: self.y = y else: self.y = self.col // 2 self.i = self.x self.j = self.y self.iteSize = 0 geo_transform = dsm_data.GetGeoTransform() self.x_origin = geo_transform[0] self.y_origin = geo_transform[3] self.pixel_width = geo_transform[1] self.pixel_height = geo_transform[5] def hasNext(self): return self.iteSize < self.length # 不能取更多值了 def get(self): if self.hasNext(): # 还能再取一个值 # 先记录当前坐标的值 —— 准备返回 i = self.i j = self.j val = self.source[i][j] # 计算下一个值的坐标 relI = self.i - self.x # 相对坐标 relJ = self.j - self.y # 相对坐标 if relJ > 0 and abs(relI) < relJ: self.i -= 1 # 上 elif relI < 0 and relJ > relI: self.j -= 1 # 左 elif relJ < 0 and abs(relJ) > relI: self.i += 1 # 下 elif relI >= 0 and relI >= relJ: self.j += 1 # 右 #判断索引是否在矩阵内 x = self.x_origin + (j + 0.5) * self.pixel_width y = self.y_origin + (i + 0.5) * self.pixel_height z = val self.iteSize += 1 return x, y, z dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif' dsm_data = gdal.Open(dsm_path) dsm_array = dsm_data.ReadAsArray() spiral_iterator = SpiralIterator(dsm_array,x=810,y=500) while spiral_iterator.hasNext(): x, y, z = spiral_iterator.get() print(f'Value at ({x},{y}):{z}')这段代码怎么改能依据共线方程将地面点(X,Y,Z)反算其在原始航 片中的像素值行列号( r,c),
时间: 2023-11-27 22:50:19 浏览: 90
您可以在SpiralIterator类中添加一个新的方法,用于将地面点(X,Y,Z)反算成像素值行列号(r,c)。具体实现如下:
```
def reverseTransform(self, x, y):
c = int((x - self.x_origin) / self.pixel_width)
r = int((y - self.y_origin) / self.pixel_height)
return r, c
```
然后,在get()方法中调用reverseTransform()方法即可得到像素值行列号:
```
def get(self):
if self.hasNext():
i = self.i
j = self.j
val = self.source[i][j]
x = self.x_origin + (j + 0.5) * self.pixel_width
y = self.y_origin + (i + 0.5) * self.pixel_height
r, c = self.reverseTransform(x, y)
self.iteSize += 1
return r, c, val
```
这样,每次调用get()方法时,就可以得到地面点对应的像素值行列号和对应的像素值。
相关问题
class SpiralIterator: def init(self, source, x=810, y=500, length=None): self.source = source self.row = np.shape(self.source)[0]#第一个元素是行数 self.col = np.shape(self.source)[1]#第二个元素是列数 if length: self.length = min(length, np.size(self.source)) else: self.length = np.size(self.source) if x: self.x = x else: self.x = self.row // 2 if y: self.y = y else: self.y = self.col // 2 self.i = self.x self.j = self.y self.iteSize = 0 geo_transform = dsm_data.GetGeoTransform() self.x_origin = geo_transform[0] self.y_origin = geo_transform[3] self.pixel_width = geo_transform[1] self.pixel_height = geo_transform[5] def hasNext(self): return self.iteSize < self.length # 不能取更多值了 def get(self): if self.hasNext(): # 还能再取一个值 # 先记录当前坐标的值 —— 准备返回 i = self.i j = self.j val = self.source[i][j] # 计算下一个值的坐标 relI = self.i - self.x # 相对坐标 relJ = self.j - self.y # 相对坐标 if relJ > 0 and abs(relI) < relJ: self.i -= 1 # 上 elif relI < 0 and relJ > relI: self.j -= 1 # 左 elif relJ < 0 and abs(relJ) > relI: self.i += 1 # 下 elif relI >= 0 and relI >= relJ: self.j += 1 # 右 #判断索引是否在矩阵内 x = self.x_origin + (j + 0.5) * self.pixel_width y = self.y_origin + (i + 0.5) * self.pixel_height z = val self.iteSize += 1 return x, y, z dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif' dsm_data = gdal.Open(dsm_path) dsm_array = dsm_data.ReadAsArray() spiral_iterator = SpiralIterator(dsm_array,x=810,y=500) while spiral_iterator.hasNext(): x, y, z = spiral_iterator.get() print(f'Value at ({x},{y}):{z}')这段代码如何添加共线方程
共线方程是用于判断三个点是否共线的方程,可以使用向量叉积的方式表示。假设我们要判断三个点 $A(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,$C(x_3,y_3,z_3)$ 是否共线,可以使用以下公式:
$$(\vec{AB} \times \vec{AC}) \cdot \vec{n} = 0$$
其中,$\vec{AB}$ 和 $\vec{AC}$ 分别表示从 $A$ 到 $B$,从 $A$ 到 $C$ 的向量,$\vec{n}$ 表示法向量,可以任意选择一组垂直于 $\vec{AB}$ 的向量。
在代码中,我们可以将获取的三个点坐标分别赋值给 $A(x_1,y_1,z_1)$,$B(x_2,y_2,z_2)$,$C(x_3,y_3,z_3)$,然后使用 numpy 库的 cross() 函数计算向量叉积,再将结果与 $\vec{n}$ 做点积,判断是否为零即可。
以下是修改后的代码:
```python
class SpiralIterator:
def __init__(self, source, x=810, y=500, length=None):
self.source = source
self.row = np.shape(self.source)[0]#第一个元素是行数
self.col = np.shape(self.source)[1]#第二个元素是列数
if length:
self.length = min(length, np.size(self.source))
else:
self.length = np.size(self.source)
if x:
self.x = x
else:
self.x = self.row // 2
if y:
self.y = y
else:
self.y = self.col // 2
self.i = self.x
self.j = self.y
self.iteSize = 0
geo_transform = dsm_data.GetGeoTransform()
self.x_origin = geo_transform[0]
self.y_origin = geo_transform[3]
self.pixel_width = geo_transform[1]
self.pixel_height = geo_transform[5]
def hasNext(self):
return self.iteSize < self.length # 不能取更多值了
def get(self):
if self.hasNext(): # 还能再取一个值
# 先记录当前坐标的值 —— 准备返回
i = self.i
j = self.j
val = self.source[i][j]
# 计算下一个值的坐标
relI = self.i - self.x # 相对坐标
relJ = self.j - self.y # 相对坐标
if relJ > 0 and abs(relI) < relJ:
self.i -= 1 # 上
elif relI < 0 and relJ > relI:
self.j -= 1 # 左
elif relJ < 0 and abs(relJ) > relI:
self.i += 1 # 下
elif relI >= 0 and relI >= relJ:
self.j += 1 # 右
# 判断索引是否在矩阵内
x = self.x_origin + (j + 0.5) * self.pixel_width
y = self.y_origin + (i + 0.5) * self.pixel_height
z = val
self.iteSize += 1
# 判断前三个点是否共线
if self.iteSize == 3:
A = np.array([self.x0, self.y0, self.z0])
B = np.array([self.x1, self.y1, self.z1])
C = np.array([x, y, z])
AB = B - A
AC = C - A
n = np.array([AB[1]*AC[2]-AB[2]*AC[1], AB[2]*AC[0]-AB[0]*AC[2], AB[0]*AC[1]-AB[1]*AC[0]])
if np.dot(n, n) == 0:
print("Three points are collinear!")
# 更新前两个点的坐标和值
self.x0 = self.x1
self.y0 = self.y1
self.z0 = self.z1
self.x1 = x
self.y1 = y
self.z1 = z
return x, y, z
dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif'
dsm_data = gdal.Open(dsm_path)
dsm_array = dsm_data.ReadAsArray()
spiral_iterator = SpiralIterator(dsm_array,x=810,y=500)
while spiral_iterator.hasNext():
x, y, z = spiral_iterator.get()
print(f'Value at ({x},{y}):{z}')
```
在 get() 函数中加入了判断前三个点是否共线的代码。其中,self.x0、self.y0、self.z0 表示第一个点的坐标和值,self.x1、self.y1、self.z1 表示第二个点的坐标和值,x、y、z 表示第三个点的坐标和值。
from osgeo import gdal import numpy as np class SpiralIterator: def init(self, source, x=810, y=500, length=None): self.source = source self.row = np.shape(self.source)[0]#第一个元素是行数 self.col = np.shape(self.source)[1]#第二个元素是列数 if length: self.length = min(length, np.size(self.source)) else: self.length = np.size(self.source) if x: self.x = x else: self.x = self.row // 2 if y: self.y = y else: self.y = self.col // 2 self.i = self.x self.j = self.y self.iteSize = 0 geo_transform = dsm_data.GetGeoTransform() self.x_origin = geo_transform[0] self.y_origin = geo_transform[3] self.pixel_width = geo_transform[1] self.pixel_height = geo_transform[5] def hasNext(self): return self.iteSize < self.length # 不能取更多值了 def get(self): if self.hasNext(): # 还能再取一个值 # 先记录当前坐标的值 —— 准备返回 i = self.i j = self.j val = self.source[i][j] # 计算下一个值的坐标 relI = self.i - self.x # 相对坐标 relJ = self.j - self.y # 相对坐标 if relJ > 0 and abs(relI) < relJ: self.i -= 1 # 上 elif relI < 0 and relJ > relI: self.j -= 1 # 左 elif relJ < 0 and abs(relJ) > relI: self.i += 1 # 下 elif relI >= 0 and relI >= relJ: self.j += 1 # 右 #判断索引是否在矩阵内 x = self.x_origin + (j + 0.5) * self.pixel_width y = self.y_origin + (i + 0.5) * self.pixel_height z = val self.iteSize += 1 return x, y, z dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif' dsm_data = gdal.Open(dsm_path) dsm_array = dsm_data.ReadAsArray() spiral_iterator = SpiralIterator(dsm_array,x=810,y=500) while spiral_iterator.hasNext(): x, y, z = spiral_iterator.get() print(f'Value at ({x},{y}):{z}')这段代码怎么改可以)依据共线方程将地面点(X,Y,Z)反算其在原始航 片中的像素值行列号( r,c),当 img1 该位置像素值为 0 值,修改其像素值为 255,当 img1 该( r,c) 位置像素值为 255 时,说明此点已被占用,则对地面点(X,Y,Z)标记此点位被遮蔽。
这段代码需要进行修改,添加反算像素行列号的函数,并在循环中调用该函数,判断是否需要修改像素值或标记遮蔽。以下是修改后的代码:
```python
from osgeo import gdal
import numpy as np
class SpiralIterator:
def __init__(self, source, x=810, y=500, length=None):
self.source = source
self.row = np.shape(self.source)[0]#第一个元素是行数
self.col = np.shape(self.source)[1]#第二个元素是列数
if length:
self.length = min(length, np.size(self.source))
else:
self.length = np.size(self.source)
if x:
self.x = x
else:
self.x = self.row // 2
if y:
self.y = y
else:
self.y = self.col // 2
self.i = self.x
self.j = self.y
self.iteSize = 0
geo_transform = dsm_data.GetGeoTransform()
self.x_origin = geo_transform[0]
self.y_origin = geo_transform[3]
self.pixel_width = geo_transform[1]
self.pixel_height = geo_transform[5]
def hasNext(self):
return self.iteSize < self.length # 不能取更多值了
def get(self):
if self.hasNext(): # 还能再取一个值
# 先记录当前坐标的值 —— 准备返回
i = self.i
j = self.j
val = self.source[i][j]
# 反算像素行列号
r, c = self.pixel2colrow(j, i)
# 判断是否需要修改像素值或标记遮蔽
if img1[r][c] == 0:
img1[r][c] = 255
elif img1[r][c] == 255:
# 标记遮蔽
self.source[i][j] = -1
# 计算下一个值的坐标
relI = self.i - self.x # 相对坐标
relJ = self.j - self.y # 相对坐标
if relJ > 0 and abs(relI) < relJ:
self.i -= 1 # 上
elif relI < 0 and relJ > relI:
self.j -= 1 # 左
elif relJ < 0 and abs(relJ) > relI:
self.i += 1 # 下
elif relI >= 0 and relI >= relJ:
self.j += 1 # 右
# 判断索引是否在矩阵内
self.checkIndex()
# 返回像素坐标和高程值
x = self.x_origin + (j + 0.5) * self.pixel_width
y = self.y_origin + (i + 0.5) * self.pixel_height
z = val
self.iteSize += 1
return x, y, z
def pixel2colrow(self, x, y):
c = int((x - self.x_origin) / self.pixel_width)
r = int((y - self.y_origin) / self.pixel_height)
return r, c
def checkIndex(self):
if self.i >= self.row:
self.i = self.row - 1
elif self.i < 0:
self.i = 0
if self.j >= self.col:
self.j = self.col - 1
elif self.j < 0:
self.j = 0
dsm_path = 'C:\sanwei\jianmo\Productions\Production_2\Production_2_DSM_part_2_2.tif'
img1_path = 'path/to/img1.tif'
dsm_data = gdal.Open(dsm_path)
dsm_array = dsm_data.ReadAsArray()
# 读取待修改的图像
img1_data = gdal.Open(img1_path)
img1 = img1_data.ReadAsArray()
spiral_iterator = SpiralIterator(dsm_array, x=810, y=500)
while spiral_iterator.hasNext():
x, y, z = spiral_iterator.get()
# 打印高程值
print(f'Value at ({x},{y}):{z}')
# 保存修改后的图像
driver = gdal.GetDriverByName('GTiff')
out_ds = driver.Create('path/to/output.tif', img1.shape[1], img1.shape[0], 1, gdal.GDT_Byte)
out_ds.SetGeoTransform(img1_data.GetGeoTransform())
out_band = out_ds.GetRasterBand(1)
out_band.WriteArray(img1)
out_band.FlushCache()
```
注意:这段代码中的 `img1` 是待修改的图像,需要根据实际情况进行替换。另外,修改像素值和标记遮蔽的判断条件可能需要根据具体需求进行调整。
阅读全文