opencv特征点跟踪
时间: 2023-09-17 21:11:21 浏览: 67
lk.zip_opencv lk_python_光流图像_光流对特征点的跟踪_视频跟踪
OpenCV中的特征点跟踪是通过SURF(速度加速特征)算法实现的。以下是一些基本步骤:
1.加载图像并将其转换为灰度图像。
2.创建一个 SURF 对象并检测关键点和描述符。
```
import cv2
# Load image and convert it to grayscale
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Create SURF object and detect Keypoints and Descriptors
surf = cv2.xfeatures2d.SURF_create(400)
keypoints, descriptors = surf.detectAndCompute(gray, None)
```
3.创建一个FLANN匹配器对象并使用描述符进行匹配。
```
# Create FLANN Matcher object
index_params = dict(algorithm=0, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
# Match descriptors
matches = flann.knnMatch(descriptors1, descriptors2, k=2)
```
4.筛选出最佳匹配点。
```
# Filter matches using Lowe's ratio test
good_matches = []
for m, n in matches:
if m.distance < 0.7 * n.distance:
good_matches.append(m)
# Draw matches
img_matches = cv2.drawMatches(img1, keypoints1, img2, keypoints2, good_matches, None, flags=2)
```
这些是基本的步骤,您可以根据需要进行调整和优化。
阅读全文