基于convlstm的地铁客流预测归一化代码
时间: 2023-11-04 22:00:08 浏览: 74
以下是基于convlstm的地铁客流预测归一化代码示例:
```python
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
# 读取数据
data = pd.read_csv('data.csv')
# 对数据进行归一化
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data)
# 定义函数对数据进行reshape
def reshape_data(data, look_back, look_forward):
X, Y = [], []
for i in range(len(data) - look_back - look_forward + 1):
X.append(data[i:(i + look_back)])
Y.append(data[(i + look_back):(i + look_back + look_forward)])
return np.array(X), np.array(Y)
# 定义输入输出的时间步
look_back = 12
look_forward = 6
# 对数据进行reshape
X, Y = reshape_data(scaled_data, look_back, look_forward)
# 将数据集分为训练集和测试集
train_size = int(len(X) * 0.8)
test_size = len(X) - train_size
train_X, train_Y = X[:train_size], Y[:train_size]
test_X, test_Y = X[train_size:], Y[train_size:]
# 将数据集reshape为3D形状
train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1], train_X.shape[2]))
test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1], test_X.shape[2]))
# 输出结果
print(train_X.shape, train_Y.shape, test_X.shape, test_Y.shape)
```
该代码中,首先读取数据,并使用`MinMaxScaler`对数据进行归一化。接着定义函数`reshape_data`对数据进行reshape,将其转换为3D形式。最后将数据集分为训练集和测试集,并将其reshape为3D形状。
阅读全文