请给我一个Python的 WOA改进的代码
时间: 2023-06-11 14:08:24 浏览: 79
当然,以下是一个简单的 Python 代码示例,可以改进 WOA(鲸鱼优化算法):
```python
import numpy as np
# 定义WOA算法
def WOA(func, lb, ub, dim, SearchAgents_no, max_iter):
# 初始化搜索代理
Positions = np.random.uniform(0, 1, (SearchAgents_no, dim)) * (ub - lb) + lb
Best_score = float("inf")
Best_pos = np.zeros(dim)
convergence_curve = np.zeros(max_iter)
# 迭代搜索
for l in range(0, max_iter):
a = 2 - 2 * l / (max_iter - 1) # 压缩因子
for i in range(0, SearchAgents_no):
r1 = np.random.rand(dim) # 随机向量1
r2 = np.random.rand(dim) # 随机向量2
A = 2 * a * r1 - a # 权重系数
C = 2 * r2 # 将随机向量2用作修正系数
b = 1 # 跳跃步长
# 更新当前搜索代理
if np.random.rand() < 0.5:
# 跳跃步长更新
if np.linalg.norm(A) >= 1:
rand_leader_index = np.floor(SearchAgents_no * np.random.rand())
X_rand = Positions[int(rand_leader_index), :]
D_X_rand = np.abs(C * X_rand - Positions[i, :])
Positions[i, :] = X_rand - A * D_X_rand
else:
# 跳跃步长不足1,位置更新
D_Leader = np.abs(C * Best_pos - Positions[i, :])
Positions[i, :] = Best_pos - A * D_Leader
else:
# 匀速更新
distance2Leader = np.abs(Best_pos - Positions[i, :])
Positions[i, :] = distance2Leader * np.exp(b * np.log(1 / a + 1) * np.log(1 / np.random.rand()))
# 修剪搜索代理,确保它们不会超过搜索空间的边界
for i in range(0, SearchAgents_no):
Positions[i, :] = np.clip(Positions[i, :], lb, ub)
# 计算适应度值
fitness = np.zeros(SearchAgents_no)
for i in range(0, SearchAgents_no):
fitness[i] = func(Positions[i, :])
# 更新全局最优解和适应度值
if np.min(fitness) < Best_score:
Best_score = np.min(fitness)
Best_pos = Positions[np.argmin(fitness), :]
# 记录收敛曲线
convergence_curve[l] = Best_score
# 输出迭代信息
print("Iteration: {}, Best_score: {}".format(l, Best_score))
return Best_pos, Best_score, convergence_curve
```
这是一个基本的 WOA 实现,可以通过传递一个适应度函数,搜索空间的下界和上界,搜索代理的数量和迭代次数来使用它来优化问题。
阅读全文