使用线程数量至少4个,爬取杂文标签下 所有书籍(至少爬取前10页)的信息(包括书名、作者、出版社、出版 日期、页数、价格、ISBN号、豆瓣评分、评价人数、书籍封面、 URL),并按照豆瓣评分降序保存(以标签名称命名)
时间: 2023-07-03 18:25:06 浏览: 157
好的,我可以为您解答这个问题。首先,您需要使用Python中的requests和BeautifulSoup库来爬取网站的信息。以下是一个简单的框架,您可以在此基础上进行修改:
```python
import requests
from bs4 import BeautifulSoup
import threading
class Book:
def __init__(self, title, author, publisher, publish_date, pages, price, isbn, rating, rating_num, cover_url, url):
self.title = title
self.author = author
self.publisher = publisher
self.publish_date = publish_date
self.pages = pages
self.price = price
self.isbn = isbn
self.rating = rating
self.rating_num = rating_num
self.cover_url = cover_url
self.url = url
def get_book_info(url):
# 爬取书籍信息的函数
pass
def crawl_books(tag):
# 爬取指定标签下的所有书籍信息
pass
def save_to_file(tag, books):
# 将爬取的书籍信息按照豆瓣评分降序保存到文件中
pass
if __name__ == '__main__':
tags = ['杂文']
threads = []
for tag in tags:
t = threading.Thread(target=crawl_books, args=(tag,))
threads.append(t)
t.start()
for t in threads:
t.join()
```
在`get_book_info`函数中,您需要使用requests库向指定的URL发送GET请求,并使用BeautifulSoup库解析HTML代码,从中提取书籍信息。您可以使用Chrome浏览器的开发者工具来查看页面的HTML代码,从而确定如何提取所需信息。以下是一个示例:
```python
def get_book_info(url):
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
res = requests.get(url, headers=headers)
soup = BeautifulSoup(res.text, 'html.parser')
title = soup.find('span', {'property': 'v:itemreviewed'}).text.strip() # 书名
author = soup.find('span', {'class': 'attrs'}).text.strip().replace('\n', '') # 作者
publisher = soup.find('span', text='出版社:').next_sibling.strip() # 出版社
publish_date = soup.find('span', text='出版年:').next_sibling.strip() # 出版日期
pages = soup.find('span', text='页数:').next_sibling.strip() # 页数
price = soup.find('span', text='定价:').next_sibling.strip() # 价格
isbn = soup.find('span', text='ISBN:').next_sibling.strip() # ISBN号
rating = soup.find('strong', {'property': 'v:average'}).text.strip() # 豆瓣评分
rating_num = soup.find('span', {'property': 'v:votes'}).text.strip() # 评价人数
cover_url = soup.find('img', {'rel': 'v:photo'})['src'] # 书籍封面
return Book(title, author, publisher, publish_date, pages, price, isbn, rating, rating_num, cover_url, url)
```
在`crawl_books`函数中,您需要循环爬取指定标签下的前10页书籍信息,并将其存储到一个列表中。以下是一个示例:
```python
def crawl_books(tag):
books = []
for i in range(10):
url = f'https://book.douban.com/tag/{tag}?start={i * 20}&type=T'
res = requests.get(url)
soup = BeautifulSoup(res.text, 'html.parser')
items = soup.find_all('li', {'class': 'subject-item'})
for item in items:
book_url = item.find('a')['href']
book = get_book_info(book_url)
books.append(book)
save_to_file(tag, books)
```
在`save_to_file`函数中,您需要将爬取的书籍信息按照豆瓣评分降序保存到文件中。以下是一个示例:
```python
def save_to_file(tag, books):
filename = f'{tag}.txt'
with open(filename, 'w', encoding='utf-8') as f:
for book in sorted(books, key=lambda x: x.rating, reverse=True):
f.write(f'{book.title}\n')
f.write(f'{book.author}\n')
f.write(f'{book.publisher}\n')
f.write(f'{book.publish_date}\n')
f.write(f'{book.pages}\n')
f.write(f'{book.price}\n')
f.write(f'{book.isbn}\n')
f.write(f'{book.rating}\n')
f.write(f'{book.rating_num}\n')
f.write(f'{book.cover_url}\n')
f.write(f'{book.url}\n')
f.write('\n')
```
最后,您可以使用多线程来加速爬取过程,将每个标签的爬取任务分配给一个线程。以上是一个简单的框架,您可以根据自己的需求进行修改。
阅读全文