写一个输入是4*10000的resnet的matlab程序
时间: 2023-12-10 22:06:21 浏览: 81
好的,下面是一个输入为4*10000的ResNet的MATLAB程序示例:
```MATLAB
classdef ResNetBlock < nnet.layer.Layer
properties
Convolution1DLayer
BatchNormalizationLayer
ReLULayer
Convolution1DLayer_1
BatchNormalizationLayer_1
ShortcutConnection
end
methods
function this = ResNetBlock(in_channels, out_channels, stride)
name = "resnet_block_" + in_channels + "_" + out_channels + "_" + stride;
this.Name = name;
this.Convolution1DLayer = convolution1dLayer(3, out_channels, "Stride", stride, "Padding", 1, "BiasLearnRateFactor", 0);
this.BatchNormalizationLayer = batchNormalizationLayer;
this.ReLULayer = reluLayer;
this.Convolution1DLayer_1 = convolution1dLayer(3, out_channels, "Padding", 1, "BiasLearnRateFactor", 0);
this.BatchNormalizationLayer_1 = batchNormalizationLayer;
if stride ~= 1 || in_channels ~= out_channels
this.ShortcutConnection = convolution1dLayer(1, out_channels, "Stride", stride, "BiasLearnRateFactor", 0);
this.ShortcutConnection.Weights = randn([1 1 in_channels out_channels])*sqrt(2/(in_channels*out_channels));
this.ShortcutConnection.Bias = zeros([1 1 out_channels]);
else
this.ShortcutConnection = [];
end
end
function Z = predict(this, X)
residual = X;
Z = this.Convolution1DLayer(X);
Z = this.BatchNormalizationLayer(Z);
Z = this.ReLULayer(Z);
Z = this.Convolution1DLayer_1(Z);
Z = this.BatchNormalizationLayer_1(Z);
if ~isempty(this.ShortcutConnection)
residual = this.ShortcutConnection(X);
end
Z = Z + residual;
Z = this.ReLULayer(Z);
end
end
end
classdef ResNet < nnet.layer.Layer
properties
Convolution1DLayer
BatchNormalizationLayer
ReLULayer
MaxPooling1DLayer
ResNetBlockLayer1
ResNetBlockLayer2
ResNetBlockLayer3
ResNetBlockLayer4
AveragePooling1DLayer
FullyConnectedLayer
end
methods
function this = ResNet(numClasses)
name = "resnet_" + numClasses;
this.Name = name;
this.Convolution1DLayer = convolution1dLayer(7, 64, "Stride", 2, "Padding", 3, "BiasLearnRateFactor", 0);
this.BatchNormalizationLayer = batchNormalizationLayer;
this.ReLULayer = reluLayer;
this.MaxPooling1DLayer = maxPooling1dLayer(3, "Stride", 2, "Padding", 1);
this.ResNetBlockLayer1 = [
ResNetBlock(4, 64, 1)
ResNetBlock(64, 64, 1)
ResNetBlock(64, 64, 1)
];
this.ResNetBlockLayer2 = [
ResNetBlock(64, 128, 2)
ResNetBlock(128, 128, 1)
ResNetBlock(128, 128, 1)
ResNetBlock(128, 128, 1)
];
this.ResNetBlockLayer3 = [
ResNetBlock(128, 256, 2)
ResNetBlock(256, 256, 1)
ResNetBlock(256, 256, 1)
ResNetBlock(256, 256, 1)
ResNetBlock(256, 256, 1)
ResNetBlock(256, 256, 1)
];
this.ResNetBlockLayer4 = [
ResNetBlock(256, 512, 2)
ResNetBlock(512, 512, 1)
ResNetBlock(512, 512, 1)
];
this.AveragePooling1DLayer = averagePooling1dLayer(10000);
this.FullyConnectedLayer = fullyConnectedLayer(numClasses);
end
function Z = predict(this, X)
Z = this.Convolution1DLayer(X);
Z = this.BatchNormalizationLayer(Z);
Z = this.ReLULayer(Z);
Z = this.MaxPooling1DLayer(Z);
Z = this.ResNetBlockLayer1.predict(Z);
Z = this.ResNetBlockLayer2.predict(Z);
Z = this.ResNetBlockLayer3.predict(Z);
Z = this.ResNetBlockLayer4.predict(Z);
Z = this.AveragePooling1DLayer(Z);
Z = this.FullyConnectedLayer(Z);
end
end
end
numClasses = 10;
inputSize = [4 10000 1];
lgraph = layerGraph();
lgraph = addLayers(lgraph, [
imageInputLayer(inputSize, "Name", "input")
ResNet(numClasses)
classificationLayer()
]);
lgraph = connectLayers(lgraph, "input", "resnet_10");
```
这里同样提供了一个ResNet50的程序,你可以根据自己的需求进行修改。在这个程序中,我们使用了MATLAB中的深度学习工具箱来定义ResNetBlock和ResNet两个类,其中ResNet由多个ResNetBlock组成的深度神经网络。在这个模型中,每个输入的数据是一个大小为4*10000的三维向量。最后,我们使用layerGraph函数将这些层组成一个网络。
阅读全文