均方误差matlab代码
时间: 2023-09-26 14:08:01 浏览: 64
可以直接使用如下代码计算均方误差:
```matlab
function mse = MSE(actual, predicted)
% actual: 实际值
% predicted: 预测值
n = length(actual);
err = actual - predicted;
mse = sum(err.^2) / n;
end
```
你可以根据实际情况修改函数的输入和输出参数。
相关问题
均方误差 matlab 代码
均方误差(Mean Squared Error,MSE)是评估预测值与真实值之间差异的一种常用方法。在MATLAB中,可以使用以下代码计算均方误差:
```matlab
function mse = calcMSE(R, U, V)
% R: 用户电影评分矩阵
% U: 用户偏好矩阵
% V: 特征电影矩阵
% mse: 均方误差
[m, n] = size(R);
mse = 0;
for i = 1:m
for j = 1:n
if R(i, j) > 0
mse = mse + (R(i, j) - U(i, :) * V(:, j))^2;
end
end
end
mse = mse / nnz(R);
end
```
其中,`R`是用户电影评分矩阵,`U`是用户偏好矩阵,`V`是特征电影矩阵,`nnz`函数用于计算矩阵中非零元素的个数。该函数会遍历矩阵中所有非零元素,计算预测值与真实值之间的差异,并将差异的平方累加到`mse`变量中。最后,将`mse`除以非零元素的个数,得到均方误差。
均方误差 matlab
在Matlab中,可以使用`mse`函数来计算均方误差(Mean Square Error)。`mse`函数的语法如下:
```matlab
MSE = mse(A, B)
```
其中,`A`和`B`是两个输入向量或矩阵,用于比较计算其均方误差。函数将返回计算得到的均方误差值`MSE`。
例如,如果要计算两个向量`x`和`y`之间的均方误差,可以使用以下代码:
```matlab
x = [1 2 3 4];
y = [1.5 2.2 3.8 4.5];
mseValue = mse(x, y);
disp(mseValue);
```
输出结果将是均方误差值。请注意,`mse`函数会自动对输入数据进行相减和平方操作,并计算它们的平均值。
阅读全文