现有20个用x和y表示的城市坐标,请用Hopfield网络求解旅行商问题,要求坐标可以自己输入,请帮我编写程序
时间: 2024-03-11 20:50:47 浏览: 82
好的,根据您的需求,我可以为您提供一个使用Hopfield网络求解TSP问题的Python程序。程序中,您可以自己输入城市坐标,然后使用Hopfield网络求解最优路径。
以下是程序代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义Hopfield网络类
class HopfieldNetwork:
def __init__(self, num_cities):
self.num_cities = num_cities
self.weights = np.zeros((num_cities, num_cities))
# 更新神经元状态
def update(self, x):
net = np.dot(self.weights, x)
y = np.zeros_like(x)
y[net > 0] = 1
y[net <= 0] = -1
return y
# 计算能量函数
def energy(self, x):
e = 0.0
for i in range(self.num_cities):
for j in range(self.num_cities):
e += self.weights[i, j] * x[i] * x[j]
return -0.5 * e
# 训练Hopfield网络
def train(self, data):
for i in range(self.num_cities):
for j in range(self.num_cities):
if i != j:
self.weights[i, j] = np.sum(data[:, i] * data[:, j])
np.fill_diagonal(self.weights, 0)
# 求解TSP问题
def tsp(self, data):
x = np.random.randint(0, 2, self.num_cities)
old_energy = self.energy(x)
for i in range(1000):
x = self.update(x)
new_energy = self.energy(x)
if np.abs(new_energy - old_energy) < 1e-8:
break
old_energy = new_energy
path = np.where(x == 1)[0]
path = np.concatenate((path, [path[0]]))
return path
# 读取城市坐标
num_cities = int(input("请输入城市数量:"))
cities = np.zeros((num_cities, 2))
for i in range(num_cities):
x, y = input("请输入第{}个城市的坐标(以空格分隔):".format(i+1)).split()
cities[i, 0] = float(x)
cities[i, 1] = float(y)
# 计算城市之间的距离
distances = np.zeros((num_cities, num_cities))
for i in range(num_cities):
for j in range(i+1, num_cities):
distance = np.sqrt((cities[i, 0] - cities[j, 0])**2 + (cities[i, 1] - cities[j, 1])**2)
distances[i, j] = distance
distances[j, i] = distance
# 建立Hopfield网络并训练
network = HopfieldNetwork(num_cities)
network.train(-distances)
# 求解TSP问题并绘制路径
path = network.tsp(-distances)
plt.plot(cities[path, 0], cities[path, 1], 'o-')
plt.show()
```
使用方法:
1. 运行程序后,输入城市数量(例如20)。
2. 依次输入每个城市的坐标,格式为"x y"(例如"1.23 4.56")。
3. 程序会自动计算城市之间的距离,并使用Hopfield网络求解TSP问题。
4. 程序会输出最优路径,并绘制城市路径图。
希望这个程序可以帮助到您!
阅读全文