stm32adc电压采集串口输出

时间: 2023-10-30 10:02:58 浏览: 139
要实现STM32的ADC电压采集并通过串口输出,首先需要配置ADC和串口的相关参数。 1. ADC配置: 首先,选择要使用的ADC通道和引脚。根据需要采集的电压信号,选择相应的通道,并将其连接到相应的引脚上。 接下来,配置ADC的时钟和分辨率。选择合适的时钟频率和采样周期,并设置ADC的分辨率。 然后,配置ADC的转换模式。可以选择连续转换模式或单次转换模式,根据实际需求进行配置。 最后,使能ADC和配置转换触发源。使能ADC,并在需要进行转换时,通过软件或外部触发信号启动ADC转换。 2. 串口配置: 首先,选择合适的串口通道和引脚。根据需求,选择相应的串口通道,并将其连接到相应的引脚上。 接下来,配置串口的通讯参数。选择合适的波特率、数据位、停止位和校验位,以确保正确的通讯。 然后,配置串口的发送方式。选择合适的发送模式,如同步模式或异步模式,并使能相应的中断(如发送完成中断)。 最后,使能串口并开启发送功能。使能串口,并在需要发送数据时,通过相应的发送函数将数据发送出去。 在程序中,可以通过ADC完成电压的采集,然后将采集的结果通过串口发送出去。可以在ADC转换完成中断中,读取ADC的结果并通过串口发送。也可以通过定时器中断来触发ADC转换,并在转换完成后将结果发送出去。 以上是实现STM32的ADC电压采集并通过串口输出的一般步骤,具体的实现过程还需根据具体芯片型号和开发环境来进行配置和编程。
相关问题

protues仿真基于stm32+adc电压采集+虚拟串口输出

### 回答1: Proteus仿真软件是一款广泛应用于电子电路设计和嵌入式系统开发的工具。在使用Proteus进行仿真时,可以使用STM32微控制器进行信号采集和处理。 STM32微控制器是一系列基于ARM Cortex-M处理器核心的嵌入式系统开发平台。其中,ADC(模数转换器)是STM32微控制器的一项重要功能,可以用于采集外部设备输入的模拟信号并转换为数字信号。 在Proteus中,可以通过建立电路原理图并添加STM32微控制器以及其他外部设备,来模拟ADC电压采集的过程。可以根据具体的需要设置ADC的引脚连接和采样率等参数。然后,在仿真过程中,可以向ADC输入一个模拟的电压信号,并通过仿真引擎模拟ADC的转换过程。 虚拟串口输出是指将虚拟信息通过串口进行输出。在STM32微控制器中,可以使用串口通信模块来与外部设备进行数据传输。在Proteus中,可以创建一个虚拟串口,并将其连接到STM32的串口引脚上。在仿真过程中,可以通过读取STM32串口的输出数据,来获取模拟电压采集结果。通过配置虚拟串口的波特率和其他通信参数,可以模拟实际串口通信的过程。 总之,Proteus仿真基于STM32 ADC电压采集的过程可以通过建立电路原理图、设置ADC参数、模拟输入电压信号、以及配置虚拟串口进行输出数据的方式来实现。这样可以方便地进行电路设计和嵌入式系统开发的测试和验证。 ### 回答2: Protues是一款常用的电子电路仿真软件,可以帮助工程师进行原理图绘制、仿真以及PCB设计等工作。在使用Protues进行基于STM32的ADC电压采集仿真时,我们可以通过配置模拟信号源来模拟外部电压输入。首先,我们需要在原理图中将STM32的引脚与ADC模块进行连接,确保正确接入。然后,我们可以选择一个适当的电压源,将其连接到要采集的ADC引脚上,模拟外部电压输入。 在设置完电路连接后,我们需要对STM32的ADC模块进行配置。通过设置寄存器的值,我们可以确定ADC的工作模式、采样位数、采样率等参数。在仿真时,我们可以通过逐个改变输入电压的值,来模拟实际环境下的电压变化情况。这样,我们可以通过仿真结果来验证ADC的正确性和准确性。 而关于虚拟串口输出,我们可以通过在原理图中添加虚拟串口模块来模拟串口通讯。虚拟串口模块可以实现从STM32芯片读取数据或向STM32芯片发送数据的功能。在仿真时,我们可以通过设置虚拟串口模块的参数,模拟串口的波特率、数据位、停止位等设置。通过虚拟串口输出模块,我们可以将ADC采集到的数据输出到虚拟串口,并观察输出结果,以验证ADC采集功能的正确性。 总之,通过在Protues中进行基于STM32的ADC电压采集仿真,并通过虚拟串口输出模块实现数据输出,我们可以模拟出真实环境中的电路行为,并验证ADC采集功能的正确性。这种仿真方式可以帮助工程师快速调试和验证电路设计,提高工作效率。

stm32adc采集电压程序

下面是一个简单的基于STM32的ADC采集电压的程序: ```c #include "stm32f4xx.h" int main(void) { // 启用GPIOA时钟和ADC1时钟 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); // 配置PA0为模拟输入 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置ADC1 ADC_CommonInitTypeDef ADC_CommonInitStructure; ADC_InitTypeDef ADC_InitStructure; ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStructure); ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStructure); // 配置ADC1通道0 ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_15Cycles); // 启动ADC1 ADC_Cmd(ADC1, ENABLE); // 等待ADC1启动 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_ADONS)); while(1) { // 开始ADC转换 ADC_SoftwareStartConv(ADC1); // 等待转换完成 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); // 读取转换结果 uint16_t value = ADC_GetConversionValue(ADC1); // 计算电压值 float voltage = (float)value / 4096.0f * 3.3f; // 在这里可以将电压值输出到串口或LCD上 } } ``` 在这个程序中,我们首先启用了GPIOA和ADC1的时钟。然后我们将PA0配置为模拟输入,并且将ADC1配置为单次转换模式。我们还使用ADC_RegularChannelConfig函数将ADC1通道0配置为采集模拟输入。在主循环中,我们使用ADC_SoftwareStartConv函数启动ADC转换,并且等待转换完成。一旦转换完成,我们使用ADC_GetConversionValue函数读取转换结果,并且计算电压值。最后,我们可以将电压值输出到串口或LCD上。

相关推荐

最新推荐

recommend-type

CUBEMX-STM32F030学习笔记

STM32F030F4P6是一款32位微控制器,基于ARM Cortex-M0内核,具有16KB FLASH存储器、4KB RAM、1个USART串口、TSSOP20脚封装,工作电压为2.4-3.6V,具有15个可用IO口。 二、HAL 库和STM32CubeMX HAL库是 STM32 微...
recommend-type

STM32 ADC DMA 使用心得 1

本文主要探讨了在STM32中如何使用ADC(模拟数字转换器)和DMA(直接存储器访问)进行数据采集。 首先,ADC是STM32中的一个重要组件,用于将模拟信号转换为数字信号,以便微控制器能够处理。在中断方式下,ADC可以在...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Python高级加密库cryptography

![【进阶】Python高级加密库cryptography](https://img-blog.csdnimg.cn/20191105183454149.jpg) # 2.1 AES加密算法 ### 2.1.1 AES加密原理 AES(高级加密标准)是一种对称块密码,由美国国家标准与技术研究院(NIST)于2001年发布。它是一种分组密码,这意味着它一次处理固定大小的数据块(通常为128位)。AES使用密钥长度为128、192或256位的迭代密码,称为Rijndael密码。 Rijndael密码基于以下基本操作: - 字节替换:将每个字节替换为S盒中的另一个字节。 - 行移位:将每一行
recommend-type

linuxjar包启动脚本

Linux中的jar包通常指的是Java Archive(Java归档文件),它是一个包含Java类、资源和其他相关文件的压缩文件。启动一个Java应用的jar包通常涉及到使用Java的Runtime或JVM(Java虚拟机)。 一个简单的Linux启动jar包的脚本(例如用bash编写)可能会类似于这样: ```bash #!/bin/bash # Java启动脚本 # 设置JAVA_HOME环境变量,指向Java安装路径 export JAVA_HOME=/path/to/your/java/jdk # jar包的路径 JAR_FILE=/path/to/your/applicat