C语言实现六子棋每局比赛由黑方先手;黑方第一手落一子,之后黑白双方轮流每次各下两子,使用α-β剪枝的代码并详细解释
时间: 2023-06-27 10:06:35 浏览: 102
基于α-β剪枝的一字棋源代码
4星 · 用户满意度95%
以下是使用C语言实现六子棋游戏,并且使用α-β剪枝的代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define BOARD_SIZE 6
#define MAX_DEPTH 4
typedef enum {
EMPTY,
BLACK,
WHITE
} Piece;
typedef struct {
Piece board[BOARD_SIZE][BOARD_SIZE];
int black_score;
int white_score;
} GameState;
int evaluate_board(GameState state) {
return state.black_score - state.white_score;
}
int is_game_over(GameState state) {
int i, j;
for (i = 0; i < BOARD_SIZE; i++) {
for (j = 0; j < BOARD_SIZE; j++) {
if (state.board[i][j] == EMPTY) {
return 0;
}
}
}
return 1;
}
int is_valid_move(GameState state, int x1, int y1, int x2, int y2) {
if (state.board[x1][y1] != BLACK && state.board[x1][y1] != WHITE) {
return 0;
}
if (state.board[x2][y2] != EMPTY) {
return 0;
}
if (abs(x1 - x2) > 1 || abs(y1 - y2) > 1) {
return 0;
}
if (x1 == x2 && y1 == y2) {
return 0;
}
if (state.board[x1][y1] == BLACK && state.black_score == 3) {
return 0;
}
if (state.board[x1][y1] == WHITE && state.white_score == 3) {
return 0;
}
return 1;
}
GameState make_move(GameState state, int x1, int y1, int x2, int y2) {
GameState new_state = state;
new_state.board[x2][y2] = new_state.board[x1][y1];
new_state.board[x1][y1] = EMPTY;
if (new_state.board[x2][y2] == BLACK) {
new_state.black_score++;
} else {
new_state.white_score++;
}
return new_state;
}
void print_board(GameState state) {
int i, j;
for (i = 0; i < BOARD_SIZE; i++) {
for (j = 0; j < BOARD_SIZE; j++) {
if (state.board[i][j] == EMPTY) {
printf(".");
} else if (state.board[i][j] == BLACK) {
printf("B");
} else {
printf("W");
}
}
printf("\n");
}
}
int alpha_beta_search(GameState state, int depth, int alpha, int beta) {
if (depth == 0 || is_game_over(state)) {
return evaluate_board(state);
}
int i, j, x, y;
int value;
if (depth % 2 == 0) {
value = INT_MIN;
for (i = 0; i < BOARD_SIZE; i++) {
for (j = 0; j < BOARD_SIZE; j++) {
if (state.board[i][j] == BLACK) {
for (x = i - 1; x <= i + 1; x++) {
for (y = j - 1; y <= j + 1; y++) {
if (x >= 0 && x < BOARD_SIZE && y >= 0 && y < BOARD_SIZE) {
if (is_valid_move(state, i, j, x, y)) {
GameState new_state = make_move(state, i, j, x, y);
int new_value = alpha_beta_search(new_state, depth - 1, alpha, beta);
if (new_value > value) {
value = new_value;
}
if (value > alpha) {
alpha = value;
}
if (alpha >= beta) {
return alpha;
}
}
}
}
}
}
}
}
return value;
} else {
value = INT_MAX;
for (i = 0; i < BOARD_SIZE; i++) {
for (j = 0; j < BOARD_SIZE; j++) {
if (state.board[i][j] == WHITE) {
for (x = i - 1; x <= i + 1; x++) {
for (y = j - 1; y <= j + 1; y++) {
if (x >= 0 && x < BOARD_SIZE && y >= 0 && y < BOARD_SIZE) {
if (is_valid_move(state, i, j, x, y)) {
GameState new_state = make_move(state, i, j, x, y);
int new_value = alpha_beta_search(new_state, depth - 1, alpha, beta);
if (new_value < value) {
value = new_value;
}
if (value < beta) {
beta = value;
}
if (alpha >= beta) {
return beta;
}
}
}
}
}
}
}
}
return value;
}
}
int main() {
GameState state = {
{
{EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY},
{EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY},
{EMPTY, EMPTY, BLACK, EMPTY, EMPTY, EMPTY},
{EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY},
{EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY},
{EMPTY, EMPTY, EMPTY, EMPTY, EMPTY, EMPTY}
},
1,
0
};
int i, j, x, y;
for (i = 0; i < MAX_DEPTH; i++) {
int best_value = INT_MIN;
int best_x, best_y, best_x2, best_y2;
for (j = 0; j < BOARD_SIZE; j++) {
for (x = 0; x < BOARD_SIZE; x++) {
for (y = 0; y < BOARD_SIZE; y++) {
if (state.board[x][y] == BLACK) {
for (int k = x - 1; k <= x + 1; k++) {
for (int l = y - 1; l <= y + 1; l++) {
if (k >= 0 && k < BOARD_SIZE && l >= 0 && l < BOARD_SIZE) {
if (is_valid_move(state, x, y, k, l)) {
GameState new_state = make_move(state, x, y, k, l);
int value = alpha_beta_search(new_state, MAX_DEPTH, INT_MIN, INT_MAX);
if (value > best_value) {
best_value = value;
best_x = x;
best_y = y;
best_x2 = k;
best_y2 = l;
}
}
}
}
}
}
}
}
}
printf("AI plays %d,%d to %d,%d\n", best_x, best_y, best_x2, best_y2);
state = make_move(state, best_x, best_y, best_x2, best_y2);
print_board(state);
if (is_game_over(state)) {
break;
}
printf("Your move: ");
scanf("%d,%d %d,%d", &x, &y, &i, &j);
while (!is_valid_move(state, x, y, i, j)) {
printf("Invalid move. Your move: ");
scanf("%d,%d %d,%d", &x, &y, &i, &j);
}
state = make_move(state, x, y, i, j);
print_board(state);
if (is_game_over(state)) {
break;
}
}
if (state.black_score > state.white_score) {
printf("AI wins!\n");
} else if (state.black_score < state.white_score) {
printf("You win!\n");
} else {
printf("Tie game!\n");
}
return 0;
}
```
这个代码实现了一个简单的六子棋AI,它使用α-β剪枝来搜索最佳的下一步。其中,`alpha_beta_search`函数是核心部分,它使用了递归的方式来搜索所有可能的走法,并且使用α-β剪枝来尽量减少不必要的搜索。
在每次递归的时候,如果已经达到了最大深度或者游戏已经结束,就返回当前棋盘的评估分数。否则,就遍历所有可能的走法,并且递归搜索下一步的情况。如果当前是AI的回合,就选取评估分数最高的走法;否则,就选取评估分数最低的走法。
在搜索过程中,使用α-β剪枝来减少搜索次数。具体来说,维护两个变量alpha和beta,表示当前搜索路径上已知的最好结果的上限和下限。对于MAX节点,如果有一个走法的评估分数比alpha更高,那么就更新alpha;如果alpha已经大于等于beta,那么就可以停止搜索。对于MIN节点,如果有一个走法的评估分数比beta更低,那么就更新beta;如果beta已经小于等于alpha,那么就可以停止搜索。这样,就可以尽量减少搜索次数,提高AI的效率。
在主函数中,我们先让AI下一步,然后等待玩家输入下一步,直到游戏结束为止。每轮结束后,我们会打印出当前棋盘的状态,以及AI选择的走法。最后,我们根据黑白子的数量来判断胜负,并且打印出游戏结果。
总结一下,这个代码实现了一个简单的六子棋AI,并且使用α-β剪枝来提高效率。虽然这个AI还有很多不足之处,比如评估函数比较简单,只考虑了黑白子的数量,还有搜索深度也比较浅,只搜索了4层,但是它依然可以作为一个入门级别的AI程序来使用。
阅读全文