plt.scatter(x_vals, y_vals, marker='.')
时间: 2024-06-01 10:11:11 浏览: 169
As an AI language model, I cannot display images or plots. However, the given code is a scatter plot which will plot the values in x_vals and y_vals with a dot marker.
相关问题
KNN=KNearestNeighbor() KNN.train(X_train, y_train) y_pred = KNN.predict(X_test, k=6) accuracy = np.mean(y_pred == y_test) print('测试集预测准确率:%f' % accuracy) plt.scatter(X_setosa_train[:, 0], X_setosa_train[:, 2], color='red', marker='o', label='setosa_train') plt.scatter(X_versicolor_train[:, 0], X_versicolor_train[:, 2], color='blue', marker='^', label='versicolor_train') plt.scatter(X_virginica_train[:, 0], X_virginica_train[:, 2], color='green', marker='s', label='virginica_train') plt.scatter(X_setosa_test[:, 0], X_setosa_test[:, 2], color='y', marker='o', label='setosa_test') plt.scatter(X_versicolor_test[:, 0], X_versicolor_test[:, 2], color='y', marker='^', label='versicolor_test') plt.scatter(X_virginica_test[:, 0], X_virginica_test[:, 2], color='y', marker='s', label='virginica_test') plt.xlabel('sepal length') plt.ylabel('petal length') plt.legend(loc = 4) plt.show()注释每一行代码
以下是对每一行代码的注释:
```python
# 初始化 KNN 模型
KNN = KNearestNeighbor()
# 使用训练集数据进行模型训练
KNN.train(X_train, y_train)
# 使用测试集数据进行预测,并指定 k=6
y_pred = KNN.predict(X_test, k=6)
# 计算模型的准确率
accuracy = np.mean(y_pred == y_test)
# 绘制散点图,展示不同种类的花的数据分布
plt.scatter(X_setosa_train[:, 0], X_setosa_train[:, 2], color='red', marker='o', label='setosa_train')
plt.scatter(X_versicolor_train[:, 0], X_versicolor_train[:, 2], color='blue', marker='^', label='versicolor_train')
plt.scatter(X_virginica_train[:, 0], X_virginica_train[:, 2], color='green', marker='s', label='virginica_train')
plt.scatter(X_setosa_test[:, 0], X_setosa_test[:, 2], color='y', marker='o', label='setosa_test')
plt.scatter(X_versicolor_test[:, 0], X_versicolor_test[:, 2], color='y', marker='^', label='versicolor_test')
plt.scatter(X_virginica_test[:, 0], X_virginica_test[:, 2], color='y', marker='s', label='virginica_test')
# 设置 x 轴和 y 轴的标签
plt.xlabel('sepal length')
plt.ylabel('petal length')
# 显示图例,并设置其位置
plt.legend(loc = 4)
# 显示图形
plt.show()
```
plt.scatter(x_scatter, y_scatter, marker_size, c=colors, cmap=plt.cm.coolwarm)
这段代码用于绘制散点图,其中:
- `x_scatter` 是 x 轴上的数据;
- `y_scatter` 是 y 轴上的数据;
- `marker_size` 是每个散点的大小;
- `colors` 是每个散点的颜色,可以是一个数值数组或者分类数组;
- `cmap` 是颜色映射表,用于将数值转化为颜色值。
具体来说,`c=colors` 表示将 `colors` 数组中的数值或分类转化为颜色,`cmap=plt.cm.coolwarm` 表示使用 coolwarm 颜色映射表。你可以根据自己的需要选择不同的颜色映射表。
阅读全文