解释这段代码:from app.api.service.BusinessService import BusinessService businessService = BusinessService() from sklearn.cluster import KMeans # 第三方算法库,暂用 # kmeans聚类 class kemans_cluster: def get_data(self,data): data = businessService.get_all_webbo_text() return data def run(self): x_train, x_test, y_train, y_test = self.data_priview() # 送入算法 knn = KMeans(n_clusters=self.cluster_sum) # 创建一个KMeans算法实例,n_clusters为初始的中心数 knn.fit(x_train, y_train) # 将测试集送入算法 # print(knn.labels_) # 获取预测结果 y_predict = knn.predict(x_test) title = 'Kmeans聚类散点图('+str(self.cluster_sum)+'个中心)' print('Kmeans预测准确度:{}'.format(knn.score(x_test,y_test))) self.showScatter(x_test,y_predict,title)
时间: 2024-04-02 07:33:15 浏览: 118
Java ee 企业应用开发:第7章 在Spring中管理事务.ppt
这段代码主要是一个KMeans聚类算法的实现,其中的BusinessService是自定义的一个服务类,用于获取一些Web文本数据。具体解释如下:
第一行代码是从app.api.service.BusinessService模块中导入BusinessService类,然后实例化一个businessService对象。
第二行代码是从sklearn.cluster模块中导入KMeans算法库。
接下来定义了一个kmeans_cluster类,其中有两个方法:
get_data()方法是通过businessService对象调用get_all_webbo_text()方法获取所有的Web文本数据。
run()方法是实现KMeans聚类算法的核心代码,首先调用data_priview()方法将数据集进行划分,然后创建一个KMeans算法实例knn,使用fit()方法将测试集送入算法进行训练,然后使用predict()方法获取预测结果。最后使用showScatter()方法绘制聚类散点图,并输出预测准确度。
需要注意的是,这里的x_train、x_test、y_train、y_test数据集的获取是在data_priview()方法中实现的,代码中未给出。
阅读全文