select * from tab where colA=’1’ union select * from tab where colB=’2’'
时间: 2023-11-13 09:05:29 浏览: 109
这是一个 SQL 注入攻击的示例,攻击者试图通过构造恶意 SQL 语句来获取未经授权的数据或执行其他恶意操作。在这个例子中,攻击者试图利用 UNION 操作符将两个 SELECT 语句合并起来,从而获取 colA=1 和 colB=2 的所有行。为了防止 SQL 注入攻击,我们应该使用参数化查询和输入验证来确保输入的值不会被误解释为 SQL 代码。
相关问题
在屏幕上打印5行菜单。按照下列格式打印菜单,每行显示一句。注意除了每行的换行不能有任何多余字符。 [1] Select crisps [2] Select popcorn [3] Select chocolate [4] Select cola [0] Exit
Sure, here's the code to print the menu:
print("[1] Select crisps\n[2] Select popcorn\n[3] Select chocolate\n[4] Select cola\n[0] Exit")
Given the following transaction record Transaction Records Transaction ID Items #1 apple, banana, coca-cola, doughnut #2 banana, coco-cola #3 banana, doughnut #4 apple, coca-cola #5 apple, banana, doughnut #6 apple, banana, coca-cola Build the FP-tree using a minimum support min_sup = 2. Show how the tree evolves for each transaction. Use the FP-Growth algorithm to discover frequent itemsets from the FP-tree. With the previous transaction record, Use the Apriori algorithm on this dataset and verify that it will generate the same set of frequent itemsets with min_sup = 2. Suppose that { Apple, Banana, Doughnut } is a frequent item set, derive all its association rules with min_confidence = 70%
Building the FP-tree:
Transaction ID #1: apple, banana, coca-cola, doughnut
```
root
|
a
|
p
|
p - b
| |
| c
| |
| d
```
Transaction ID #2: banana, coca-cola
```
root
|
a
|
p - b - c
| |
| d
```
Transaction ID #3: banana, doughnut
```
root
|
a
|
p - b - c
| | |
| | d
| |
| d
```
Transaction ID #4: apple, coca-cola
```
root
|
a - c
| |
| p - b - c
| | |
| | d
| |
| d
```
Transaction ID #5: apple, banana, doughnut
```
root
|
a - b - d
| | |
| | c
| |
| p - b - c
| |
| d
|
b - d
|
c
```
Transaction ID #6: apple, banana, coca-cola
```
root
|
a - b - c
| | |
| | d
| |
| p - b - c
| |
| d
|
b - d
|
c
```
Using the FP-Growth algorithm to discover frequent itemsets:
Starting with the most frequent item (d):
- d (4)
- b-d (3)
- c-b-d (2)
- a-b-d (2)
- a-p-b-d (2)
Next, starting with the next most frequent item (b):
- b (4)
- a-b (3)
- p-b (3)
- c-b (2)
- a-p-b (2)
- c-b-d (2)
- a-b-d (2)
- a-p-b-d (2)
Finally, starting with the least frequent item (c):
- c (3)
- b-c (2)
- a-b-c (2)
- p-b-c (2)
- c-b-d (2)
- a-b-d (2)
- a-p-b-d (2)
All sets of frequent itemsets with minimum support of 2 are:
- {d} (4)
- {b} (4)
- {c} (3)
- {a, d} (2)
- {b, d} (3)
- {p, b, d} (2)
- {c, b, d} (2)
- {a, b, d} (2)
- {a, p, b, d} (2)
- {a, b} (3)
- {p, b} (3)
- {c, b} (2)
- {a, p, b} (2)
- {c, b, d} (2)
- {a, b, d} (2)
- {a, p, b, d} (2)
- {a, c, b} (2)
- {p, c, b} (2)
- {a, p, c, b} (2)
Using the Apriori algorithm to verify the frequent itemsets with minimum support of 2:
Starting with 1-itemsets:
- {apple} (3)
- {banana} (4)
- {coca-cola} (3)
- {doughnut} (4)
Next, starting with 2-itemsets:
- {apple, banana} (2)
- {apple, coca-cola} (1)
- {apple, doughnut} (2)
- {banana, coca-cola} (2)
- {banana, doughnut} (2)
- {coca-cola, doughnut} (2)
Finally, starting with 3-itemsets:
- {apple, banana, doughnut} (2)
All sets of frequent itemsets with minimum support of 2 are:
- {banana} (4)
- {doughnut} (4)
- {apple} (3)
- {coca-cola} (3)
- {banana, doughnut} (2)
- {apple, doughnut} (2)
- {apple, banana} (2)
- {banana, coca-cola} (2)
- {coca-cola, doughnut} (2)
- {apple, banana, doughnut} (2)
The Apriori algorithm generates the same set of frequent itemsets with minimum support of 2 as the FP-Growth algorithm.
Deriving all association rules with 70% minimum confidence for the frequent itemset {Apple, Banana, Doughnut}:
First, find all the subsets of {Apple, Banana, Doughnut}:
- {Apple, Banana}
- {Apple, Doughnut}
- {Banana, Doughnut}
- {Apple}
- {Banana}
- {Doughnut}
Next, calculate the confidence for each rule:
- {Apple, Banana} -> {Doughnut} (2/2 = 100%)
- {Apple, Doughnut} -> {Banana} (2/2 = 100%)
- {Banana, Doughnut} -> {Apple} (2/2 = 100%)
- {Apple} -> {Banana, Doughnut} (2/3 = 67%)
- {Banana} -> {Apple, Doughnut} (2/4 = 50%)
- {Doughnut} -> {Apple, Banana} (2/4 = 50%)
All association rules with minimum confidence of 70% for the frequent itemset {Apple, Banana, Doughnut} are:
- {Apple, Banana} -> {Doughnut}
- {Apple, Doughnut} -> {Banana}
- {Banana, Doughnut} -> {Apple}
阅读全文