帮我使用superglue和superpoint写一个图像拼接的代码
时间: 2023-09-11 15:04:54 浏览: 402
好的,首先需要安装OpenCV和PyTorch,然后安装SuperGlue和SuperPoint:
```python
pip install opencv-python
pip install torch torchvision
pip install superglue-cuda100
pip install superpoint
```
接下来是代码实现:
```python
import cv2
import numpy as np
import torch
import superglue_cuda
import superpoint
# 加载模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
superpoint = superpoint.SuperPointFrontend(weights_path='superpoint_v1.pth',
nms_dist=4,
conf_thresh=0.015,
nn_thresh=0.7,
cuda=True)
superpoint = superpoint.to(device)
superglue = superglue_cuda.SuperGlue({'descriptor_dim': 256, 'weights': 'indoor.pth'})
superglue = superglue.to(device)
# 加载图像
img1 = cv2.imread('img1.jpg')
img2 = cv2.imread('img2.jpg')
# 转换为灰度图像
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 提取特征点和描述符
kpts1, desc1, heatmap1 = superpoint.run(torch.from_numpy(gray1).unsqueeze(0).float().to(device))
kpts2, desc2, heatmap2 = superpoint.run(torch.from_numpy(gray2).unsqueeze(0).float().to(device))
# 进行匹配
matches = superglue({'descriptors0': desc1, 'descriptors1': desc2})
# 提取匹配的点
mkpts1 = kpts1[matches[0].indices0]
mkpts2 = kpts2[matches[0].indices1]
# 进行图像拼接
H, mask = cv2.findHomography(mkpts2[:, :2], mkpts1[:, :2], cv2.RANSAC, 5.0)
result_img = cv2.warpPerspective(img2, H, (img1.shape[1] + img2.shape[1], img1.shape[0]))
result_img[0:img1.shape[0], 0:img1.shape[1]] = img1
# 显示结果
cv2.imshow('Result', result_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这个代码会将图片img2拼接到img1上。可以根据需要修改图片的文件名和路径。注意,SuperPoint和SuperGlue只能处理单通道的灰度图像,因此在进行特征提取和描述符匹配之前需要将图像转换为灰度图像。
阅读全文