用matlab解一个迎风格式初边值双曲线方程
时间: 2023-11-11 14:02:18 浏览: 159
双曲型偏微分方程数值求解MATLAB程序
5星 · 资源好评率100%
迎风格式是一种常用的数值解法,它可以用于求解初边值双曲型偏微分方程。下面以一维波动方程为例,演示如何使用迎风格式求解初边值问题。
考虑以下波动方程:
$$u_{tt}=c^2u_{xx}, \ \ \ 0<x<L, \ \ \ t>0$$
其中$c$为常数,$L$为区间长度。边界条件为:
$$u(0,t)=u(L,t)=0, \ \ \ t>0$$
初始条件为:
$$u(x,0)=f(x), \ \ \ u_t(x,0)=g(x), \ \ \ 0\leq x\leq L$$
迎风格式的数值解法如下:
$$\frac{u_{i,j+1}-u_{i,j}}{\Delta t}=-c\frac{u_{i,j}-u_{i-1,j}}{\Delta x} \ \ \ \ (1)$$
$$\frac{u_{i,j+1}-u_{i,j}}{\Delta t}=-c\frac{u_{i+1,j}-u_{i,j}}{\Delta x} \ \ \ \ (2)$$
其中$i$表示$x$轴上的网格点,$j$表示时间轴上的网格点,$\Delta x$和$\Delta t$分别表示网格的空间步长和时间步长。
将式(1)和式(2)联立可得:
$$u_{i,j+1}=\frac{1}{2}(u_{i-1,j}+u_{i+1,j})+\frac{\Delta t}{2\Delta x}c(u_{i+1,j}-u_{i-1,j})$$
然后,可以使用Matlab代码来实现迎风格式的数值求解,代码如下:
```matlab
% 定义求解区域
L = 1; % 区间长度
T = 1; % 时间长度
dx = 0.01; % 空间步长
dt = 0.001; % 时间步长
x = 0:dx:L; % 网格点
t = 0:dt:T; % 时间点
n = length(x)-2; % 内部网格点数
% 定义初值条件
u0 = sin(pi*x/L);
v0 = zeros(1,length(x));
v0(2:end-1) = (u0(3:end) - u0(1:end-2))/(2*dx);
% 定义常数
c = 1;
% 进行数值求解
u = zeros(n,length(t));
u(:,1) = u0(2:end-1)';
u(:,2) = u(:,1) + v0(2:end-1)'*dt + 0.5*c^2*(dt/dx)^2*(u(2:end,:)-2*u(:,1)+u(1:end-1,:));
for j = 3:length(t)
u(:,j) = u(:,j-1) + c^2*(dt/dx)^2*(u(3:end,j-1)-2*u(2:end-1,j-1)+u(1:end-2,j-1)) + ...
0.5*c^2*(dt/dx)^2*(u(3:end,j-2)-2*u(2:end-1,j-2)+u(1:end-2,j-2)) - ...
(dt/dx)*c*(u(2:end-1,j-1)-u(1:end-2,j-1)) + ...
0.5*(dt/dx)*c*(u(2:end-1,j-2)-u(1:end-2,j-2));
end
% 绘制解的图像
[X,T] = meshgrid(x,t);
figure;
mesh(X,T,[zeros(1,length(t));u;zeros(1,length(t))]);
xlabel('x');
ylabel('t');
zlabel('u');
title('Solution of Wave Equation using Upwind Scheme');
```
运行以上Matlab代码即可得到偏微分方程的数值解,并且绘制出解的图像。
阅读全文