请分别写出这些可复用的python代码,然后咱们逐一讨论
时间: 2024-03-05 11:53:57 浏览: 98
Pythonic and Reusable Code python代码的一些技巧
好的,我可以给您提供一些示例代码:
1. 数据获取:
```python
# 从tushare获取历史行情数据
import tushare as ts
df = ts.get_k_data('000001', start='2010-01-01', end='2021-01-01')
```
2. 数据预处理:
```python
# 数据清洗
import pandas as pd
df.dropna(inplace=True) # 删除缺失值
# 特征工程
df['ma5'] = df['close'].rolling(window=5).mean() # 计算5日均线
df['ma20'] = df['close'].rolling(window=20).mean() # 计算20日均线
```
3. 交易信号生成:
```python
# 根据均线交叉生成交易信号
df['signal'] = 0 # 初始化信号列
df.loc[df['ma5'] > df['ma20'], 'signal'] = 1 # 5日均线上穿20日均线,买入信号
df.loc[df['ma5'] < df['ma20'], 'signal'] = -1 # 5日均线下穿20日均线,卖出信号
```
4. 交易执行:
```python
# 执行交易操作
capital = 100000 # 初始资金
position = 0 # 初始仓位
for i in range(1, len(df)):
if df.loc[i, 'signal'] == 1 and position == 0: # 买入信号且空仓
price = df.loc[i, 'open'] # 以开盘价买入
shares = capital / price # 计算购买股数
position = shares * price # 计算持仓市值
capital = 0 # 剩余现金为0
elif df.loc[i, 'signal'] == -1 and position > 0: # 卖出信号且有持仓
price = df.loc[i, 'open'] # 以开盘价卖出
capital = position / price # 计算卖出获得的现金
position = 0 # 持仓市值为0
```
5. 风险控制:
```python
# 设置止损和止盈
stop_loss = 0.05 # 止损比例
take_profit = 0.1 # 止盈比例
# 执行交易操作(加入风险控制)
capital = 100000 # 初始资金
position = 0 # 初始仓位
for i in range(1, len(df)):
if df.loc[i, 'signal'] == 1 and position == 0: # 买入信号且空仓
price = df.loc[i, 'open'] # 以开盘价买入
shares = capital / price # 计算购买股数
position = shares * price # 计算持仓市值
capital = 0 # 剩余现金为0
elif df.loc[i, 'signal'] == -1 and position > 0: # 卖出信号且有持仓
price = df.loc[i, 'open'] # 以开盘价卖出
capital = position / price # 计算卖出获得的现金
position = 0 # 持仓市值为0
elif position > 0 and (df.loc[i, 'low'] / df.loc[i-1, 'high'] - 1) < -stop_loss: # 止损
price = df.loc[i, 'open'] # 以开盘价卖出
capital = position / price # 计算卖出获得的现金
position = 0 # 持仓市值为0
elif position > 0 and (df.loc[i, 'high'] / df.loc[i-1, 'low'] - 1) > take_profit: # 止盈
price = df.loc[i, 'open'] # 以开盘价卖出
capital = position / price # 计算卖出获得的现金
position = 0 # 持仓市值为0
```
6. 绩效评估:
```python
# 计算策略绩效指标
import numpy as np
daily_returns = df['close'].pct_change() # 计算每日收益率
sharpe_ratio = np.sqrt(252) * daily_returns.mean() / daily_returns.std() # 计算夏普比率
cumulative_returns = (1 + daily_returns).cumprod() # 计算累积收益率
```
以上是一些Python代码示例,可以用于量化交易系统开发。需要注意的是,这些代码仅是示例,实际开发中还需要考虑更多因素,例如交易成本、资金管理等。
阅读全文