帮我写一个基于LSTM的七输入双输出回归预测模型的MATLAB代码,数据集维度为(753:,7)
时间: 2024-03-30 18:33:58 浏览: 59
LSTM回归预测附matlab代码+运行结果.zip
好的,以下是一个简单的基于LSTM的七输入双输出回归预测模型的MATLAB代码:
```matlab
% Load data
data = load('data.mat');
data = data.data;
% Split data into training and testing sets
train_percent = 0.8;
train_size = floor(train_percent*size(data,1));
train_data = data(1:train_size,:);
test_data = data(train_size+1:end,:);
% Normalize data
[train_data_norm, mu, sigma] = zscore(train_data);
test_data_norm = (test_data - mu)./sigma;
% Define input and output dimensions
num_features = 7;
num_outputs = 2;
% Define LSTM network architecture
num_hidden_units = 100;
layers = [ ...
sequenceInputLayer(num_features)
lstmLayer(num_hidden_units,'OutputMode','last')
fullyConnectedLayer(num_outputs)
regressionLayer];
% Define training options
options = trainingOptions('adam', ...
'MaxEpochs',50, ...
'MiniBatchSize',32, ...
'InitialLearnRate',0.001, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',10, ...
'GradientThreshold',1, ...
'Verbose',0);
% Train LSTM network
XTrain = train_data_norm(:,1:num_features);
YTrain = train_data_norm(:,num_features+1:end);
net = trainNetwork(XTrain',YTrain',layers,options);
% Test LSTM network
XTest = test_data_norm(:,1:num_features);
YTest = test_data_norm(:,num_features+1:end);
YPred = predict(net,XTest');
YPred = YPred'.*sigma(num_features+1:end) + mu(num_features+1:end);
% Plot results
figure;
subplot(2,1,1);
plot(YTest(:,1),'b');
hold on;
plot(YPred(:,1),'r');
title('Output 1');
legend('Actual','Predicted');
subplot(2,1,2);
plot(YTest(:,2),'b');
hold on;
plot(YPred(:,2),'r');
title('Output 2');
legend('Actual','Predicted');
```
在代码中,我们首先加载数据,并将其拆分为训练集和测试集。然后,我们对训练数据进行标准化处理,以便在训练期间更好地训练模型。接下来,我们定义了LSTM网络的架构,包括输入层、LSTM层、全连接层和回归层。我们还定义了训练选项,包括最大时期数、批量大小、初始学习率等。然后我们使用trainNetwork函数来训练LSTM网络。最后,我们使用predict函数来测试LSTM网络,并绘制实际和预测输出的图形。
阅读全文