unsupervised degradation representation learning for blind super-resolution
时间: 2023-04-24 14:05:59 浏览: 229
好的,我会用中文回答您的问题。
无监督退化表示学习用于盲超分辨率技术的具体实现方法是什么?
无监督退化表示学习是指在没有真实高分辨率图像的情况下,通过学习低分辨率图像与其对应的退化模型来进行超分辨率重建。该方法主要包含以下几个步骤:
1. 数据预处理:收集一些低分辨率图像,并通过一些退化模型生成对应的高分辨率图像。这些图像对被用于训练模型。
2. 特征提取:使用深度学习模型,如卷积神经网络,从低分辨率图像中提取特征。
3. 退化模型学习:使用生成对抗网络(GAN)或变分自编码器(VAE)等方法,学习低分辨率图像的退化模型。
4. 重建网络学习:通过学习低分辨率图像和其对应的退化模型,训练重建网络来实现超分辨率重建。
通过这些步骤,可以实现无监督退化表示学习用于盲超分辨率技术。
相关问题
Feature Representation Learning for Unsupervised Cross-domain Image Retrieval
Feature representation learning for unsupervised cross-domain image retrieval refers to the process of extracting meaningful features from images in one domain (e.g., paintings) and using those features to retrieve similar images in another domain (e.g., photographs). This is typically done in an unsupervised manner, meaning that no explicit labels or annotations are provided to guide the learning process.
One common approach to unsupervised feature representation learning is to use deep neural networks, such as convolutional neural networks (CNNs), to extract high-level features from images. These features can then be used to train a retrieval model that maps images from one domain to the other based on their similarity in feature space.
There are several challenges to unsupervised cross-domain image retrieval, including differences in image content, style, and quality between domains. To address these challenges, researchers have developed a variety of techniques, such as domain adaptation, data augmentation, and adversarial training, to improve the performance of feature representation learning for cross-domain image retrieval.
Overall, feature representation learning for unsupervised cross-domain image retrieval is an important area of research with many potential applications, including art history, fashion, and product recommendation.
MG-BERT: leveraging unsupervised atomic representation learning for molecular property prediction预训练策略
MG-BERT是一种用于分子属性预测的预训练模型,它是基于BERT的模型。它的预训练策略可以分为以下几步:
1. 原子嵌入:使用晶体学数据库(CSD)中的晶体结构数据,从中提取原子坐标并将其转换为原子嵌入表示。
2. 无监督原子表示学习:使用Transformer编码器,对原子嵌入进行无监督的原子表示学习。通过掩码语言建模任务(MLM)和下一句预测任务(NSP)来训练模型。
3. 有监督分子属性预测:使用已知的分子属性数据集,对MG-BERT进行有监督的微调。
在预训练阶段,MG-BERT使用了与BERT类似的预训练任务,例如掩码语言建模任务和下一句预测任务。这些任务的目的是让模型学习原子之间的关系和上下文信息。在微调阶段,MG-BERT使用已知的分子属性数据集进行有监督的微调,以预测分子的性质。
阅读全文