loss = F.cross_entropy(outputs, labels) loss.backward()什么意思
时间: 2024-05-18 07:12:29 浏览: 75
这段代码使用 PyTorch 库中的函数计算 outputs 和 labels 之间的交叉熵损失(cross entropy loss),并将计算出的损失值存储在变量 loss 中。交叉熵损失常用于分类任务,可以衡量模型的预测结果与真实标签之间的差距。然后,使用反向传播算法计算损失值关于模型参数的梯度,并将梯度值存储在各自的张量中。最后,可以通过调用优化器的 step 函数来更新模型参数,以使模型的预测结果更加接近真实标签。这段代码可能用于训练神经网络模型,以便使其在给定的数据集上获得更好的分类性能。
相关问题
for epoch in range(config.num_epochs): print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs)) for i, (trains, labels) in enumerate(train_iter): outputs = model(trains) model.zero_grad() loss = F.cross_entropy(outputs, labels) loss.backward() optimizer.step() if total_batch % 1 == 0: # 每多少轮输出在训练集和验证集上的效果 true = labels.data.cpu() predic = torch.max(outputs.data, 1)[1].cpu() train_acc = metrics.accuracy_score(true, predic) dev_acc, dev_loss = evaluate(config, model, dev_iter) if dev_loss < dev_best_loss: dev_best_loss = dev_loss torch.save(model.state_dict(), config.save_path) improve = '*' last_improve = total_batch else: improve = '' time_dif = get_time_dif(start_time) msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}' print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve)) text = msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve) with open(f"{config.model_name}_result.txt", mode="a+", encoding="utf8") as f: f.write(text + "\n") model.train() total_batch += 1 if (total_batch - last_improve > config.require_improvement) or total_batch == 188: # 验证集loss超过1000batch没下降,结束训练 print("No optimization for a long time, auto-stopping...") flag = True break if flag: break test(config, model, test_iter)
这是一个训练模型的代码片段,包括了模型的训练和验证过程。首先进入外层循环,遍历所有epoch,每个epoch都输出当前训练的进度。然后进入内层循环,遍历所有batch,对当前batch进行前向传播、反向传播和梯度更新。然后判断是否需要输出训练集和验证集上的效果,计算训练集上的准确率和验证集上的准确率和loss。如果当前的验证集loss比之前的最佳loss还要小,则保存当前的模型参数,并重置last_improve为当前total_batch的值。如果当前验证集loss没有下降,则不保存模型,并将last_improve的值保持不变。在循环过程中,total_batch的值会不断增加,flag标志位用于判断是否已经训练了很久但是效果没有提升,如果flag为True,则跳出循环,结束训练。最后调用了一个test函数,用于对测试集进行测试并输出结果。
详细分析一下python代码:import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.01, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=True, min_lr=0) loss_hist, acc_hist = [], [] loss_hist_val, acc_hist_val = [], [] for epoch in range(140): running_loss = 0.0 correct = 0 for data in train_loader: batch, labels = data batch, labels = batch.to(device), labels.to(device) optimizer.zero_grad() outputs = net(batch) loss = criterion(outputs, labels) loss.backward() optimizer.step() # compute training statistics _, predicted = torch.max(outputs, 1) correct += (predicted == labels).sum().item() running_loss += loss.item() avg_loss = running_loss / len(train_set) avg_acc = correct / len(train_set) loss_hist.append(avg_loss) acc_hist.append(avg_acc) # validation statistics net.eval() with torch.no_grad(): loss_val = 0.0 correct_val = 0 for data in val_loader: batch, labels = data batch, labels = batch.to(device), labels.to(device) outputs = net(batch) loss = criterion(outputs, labels) _, predicted = torch.max(outputs, 1) correct_val += (predicted == labels).sum().item() loss_val += loss.item() avg_loss_val = loss_val / len(val_set) avg_acc_val = correct_val / len(val_set) loss_hist_val.append(avg_loss_val) acc_hist_val.append(avg_acc_val) net.train() scheduler.step(avg_loss_val) print('[epoch %d] loss: %.5f accuracy: %.4f val loss: %.5f val accuracy: %.4f' % (epoch + 1, avg_loss, avg_acc, avg_loss_val, avg_acc_val))
这段代码是一个基于PyTorch的神经网络训练过程。代码中使用了torch.optim模块中Adam优化器和ReduceLROnPlateau学习率调度器。其中,Adam优化器用于优化网络的参数,而ReduceLROnPlateau调度器用于自动调整学习率以提高训练效果。代码中使用nn.CrossEntropyLoss()作为损失函数,用于计算输出结果与标签之间的差距。
接下来的代码中使用了两个循环,一个是对训练数据集的循环,另一个是对验证数据集的循环。在训练数据集循环中,首先将数据集分成一个个batch,然后将batch和对应的标签传入网络进行前向传播,计算损失值,然后进行反向传播和参数更新。在这个过程中,记录了每个batch的正确预测个数和损失值,最后计算平均损失和准确率,并将其保存在loss_hist和acc_hist列表中。
在验证数据集循环中,同样将数据集分成一个个batch,然后将batch和对应的标签传入网络进行前向传播,计算损失值,并计算正确预测个数。最后将每个batch的平均损失和准确率记录在loss_hist_val和acc_hist_val列表中。
在每个epoch结束后,调用scheduler.step(avg_loss_val)方法来更新学习率,并打印出当前epoch的训练和验证结果。其中,avg_loss和avg_acc记录了该epoch的训练结果,avg_loss_val和avg_acc_val记录了该epoch的验证结果。
阅读全文