STM32ADC采集到压电薄膜电压的处理

时间: 2023-09-16 16:11:49 浏览: 43
方法是什么? 对于这个技术问题,我可以给出一些参考答案。在STM32微控制器上进行压电薄膜电压的采集,可以使用其内置的ADC模块。通过读取ADC模块的值,可以获得薄膜压电信号的电压值。根据电压和电容之间的关系,可以计算出薄膜的位移或压力。在处理采集到的数据时,还需要进行滤波和校准等操作,以提高数据的准确性和可靠性。不同的应用场景和硬件平台可能需要不同的处理方法,需要根据具体情况进行选择和优化。
相关问题

stm32adc采集交流电压

对于STM32的ADC采集交流电压,需要进行一些特殊的处理。因为交流电压是有正负波动的,而ADC只能采集正电压。因此,需要通过一个电容将交流电压转换为直流电压,再进行采集。具体的实现方法可以参考以下步骤: 1. 将交流电压通过一个电容进行滤波,得到一个直流电压信号。 2. 将直流电压信号输入到STM32的ADC通道中进行采集。 3. 根据采集到的ADC数值,计算出对应的直流电压值。 需要注意的是,由于交流电压的频率较高,因此需要选择合适的电容进行滤波,以确保滤波效果良好。

stm32adc采集正弦波电压

在STM32中采集正弦波电压可以通过配置定时器的数据更新中断和ADC模块来实现。首先,在定时器的中断处理函数中,可以通过改变占空比来更新CCR的值。具体的代码如下所示: ```c void TIM1_UP_IRQHandler(void) { if (TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET) { pwm1_index++; if(pwm1_index > 36) pwm1_index = 0; pwm2_index++; if(pwm2_index > 36) pwm2_index = 0; pwm3_index++; if(pwm3_index > 36) pwm3_index = 0; pwm4_index++; if(pwm4_index > 36) pwm4_index = 0; TIM1->CCR1 = indexWave[pwm1_index]; TIM1->CCR2 = indexWave[pwm2_index]; TIM1->CCR3 = indexWave[pwm3_index]; TIM1->CCR4 = indexWave[pwm4_index]; TIM_ClearITPendingBit(TIM1, TIM_IT_Update); } } ``` 接下来,需要使能ADC模块,并在每次中断中进行采集。可以通过设置标志位来控制ADC的采集次数和采集时间。下面是一个示例代码: ```c #define SAMPLE_SIZE 270 uint16_t adc_values[SAMPLE_SIZE]; uint16_t adc_max_value; uint16_t adc_min_value; uint16_t adc_sample_count; void ADC_IRQHandler(void) { if (ADC_GetITStatus(ADC1, ADC_IT_EOC) != RESET) { adc_values[adc_sample_count] = ADC_GetConversionValue(ADC1); if (adc_sample_count == 0) { adc_max_value = adc_values[0]; adc_min_value = adc_values[0]; } else { if (adc_values[adc_sample_count] > adc_max_value) { adc_max_value = adc_values[adc_sample_count]; } if (adc_values[adc_sample_count] < adc_min_value) { adc_min_value = adc_values[adc_sample_count]; } } adc_sample_count++; if (adc_sample_count >= SAMPLE_SIZE) { // 采集完成,进行处理 // ... // 重置标志位和计数器 adc_sample_count = 0; ADC_ClearITPendingBit(ADC1, ADC_IT_EOC); } else { // 继续下一次采集 ADC_StartOfConversion(ADC1); } } } ``` 通过以上代码,可以实现在STM32中采集正弦波电压。在ADC的中断处理函数中,每次采集到的值会存储在数组中,并记录最大值和最小值。采集完成后,可以对采集到的数据进行进一步处理。

相关推荐

最新推荐

recommend-type

STM32 ADC采样

数据的采集、存储与显示是嵌入式系统常见的功能。STM32F103ZET6内部集成了12位的逐次逼近型模拟数字转换器,它有多大18个通道,可测量16个外部和2个内部信号源。
recommend-type

揭秘STM32多路电压测量电路

STM32在速度、功耗方面性能都更加优越,并且STM32价格较低,在成本上也有优势。适合于控制电子设备的设计。使用12位ADC,能够满足一定的测量精度,对于较高的测量要求,则需要使用更高精确度的ADC。但是使用高精度 ...
recommend-type

STM32_ADC多通道采样的例子

STM32 ADC多通道转换 描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求...
recommend-type

基于STM32数据采集器的设计

数据采集技术在工业、航天、军事...基于上述要求提出了一种基于STM32F101 的数据采集器的设计方案,该数据采集器使用MODBUS 协议作为RS485 通信标准规约,信号调理电路与STM32F101 的AD 采样通道之间均采用硬件隔离保护
recommend-type

STM32 DMA中断模式下ADC多通道数据采集+均值滤波

本程序实现STM32 DMA中断模式下ADC多通道数据采集,并经过简单的均值滤波,亲测可用。 若有错误之处,希望读者指出,大家共同学习,一起进步!
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。