写出下列代码可以实现的效果:def Normalization(Array): # 数组归一化到0~1 min = np.min(Array) max = np.max(Array) if max - min == 0: return Array else: return (Array - min) / (max - min) Device = torch.device("cuda:0") # GPU加速 #实例化UNET模型,定义输入和输出通道数,初始化特征数和激活函数 Unet = UNet(in_channels=3, out_channels=1, init_features=4, WithActivateLast=True, ActivateFunLast=torch.sigmoid).to( Device) #加载预训练权重 Unet.load_state_dict(torch.load(os.path.join('0700.pt'), map_location=Device)) # 将权重作为素材,提升预测的效果 Unet.eval() #验证模式 torch.set_grad_enabled(False) # 将梯度除外 InputImgSize = (128, 128)#定义输入图片尺寸 rospy.init_node('dete',anonymous=True) #ros初始化节点 cvBridge=CvBridge() ark_contrl= AckermannDrive() #实例化阿克曼消息 #定义数据预处理变换 ValImgTransform = transforms.Compose([ transforms.Resize(InputImgSize), transforms.ToTensor(), transforms.Normalize(mean=[0.46], std=[0.10]),]) # 把数据作为素材送去变形,全部变为tensor reached = False#到达标志位 done = False#完成标志位 color = True#颜色标志位 old_angle = 0#角度清零 Dist = np.array([-0.31835, 0.09464, 0.00097, -0.00028, 0.00000], dtype=np.float32) K = np.array([[ 393.77343 , 0.9925 , 320.28895], [ 0, 526.74596 , 249.73700], [ 0, 0, 1]], dtype=np.float32)#相机内参 H = np.array([[ -0.47188088, -2.00515086, 673.7630132], [ 0.04056235, 0.00548473, -246.8003057], [ 0.00015475, -0.00404723, 1. ]])#透视变换矩阵
时间: 2024-04-09 17:32:31 浏览: 95
这段代码实现了以下功能:
1. 定义了一个函数`Normalization(Array)`,用于将数组归一化到0~1的范围。
2. 创建了一个GPU加速的设备对象`Device`。
3. 实例化了一个UNET模型`Unet`,并加载了预训练权重。
4. 将模型设置为评估模式,并禁用梯度计算。
5. 定义了输入图片的尺寸和ROS节点的初始化。
6. 创建了一个数据预处理变换`ValImgTransform`,用于将输入图片进行变形和标准化。
7. 设置了一些标志位和变量,用于控制程序的流程。
8. 定义了相机的畸变参数`Dist`、相机内参矩阵`K`和透视变换矩阵`H`。
相关问题
给下列代码添加注释:def Normalization(Array): # 数组归一化到0~1 min = np.min(Array) max = np.max(Array) if max - min == 0: return Array else: return (Array - min) / (max - min)
这段代码定义了一个名为 `Normalization` 的函数,用于将数组归一化到0~1的范围。
函数接受一个数组 `Array` 作为参数。
首先,函数使用 `np.min()` 函数计算数组的最小值,并将结果赋值给变量 `min`。
然后,函数使用 `np.max()` 函数计算数组的最大值,并将结果赋值给变量 `max`。
接下来,通过判断最大值与最小值的差是否为0来判断是否需要进行归一化。如果最大值与最小值的差为0,则直接返回原数组 `Array`,因为无法进行有效的归一化操作。
如果最大值与最小值的差不为0,则执行归一化操作。函数将原数组 `Array` 减去最小值 `min`,然后除以最大值与最小值的差 `max - min`,得到归一化后的结果。
最终,函数返回归一化后的数组。
这段代码通过计算数组的最大值和最小值,并进行归一化的处理,确保数组中的元素在0~1的范围内。
import numpy as np import matplotlib.pyplot as plt import pickle as pkl import pandas as pd import tensorflow.keras from tensorflow.keras.models import Sequential, Model, load_model from tensorflow.keras.layers import LSTM, GRU, Dense, RepeatVector, TimeDistributed, Input, BatchNormalization, \ multiply, concatenate, Flatten, Activation, dot from sklearn.metrics import mean_squared_error,mean_absolute_error from tensorflow.keras.optimizers import Adam from tensorflow.python.keras.utils.vis_utils import plot_model from tensorflow.keras.callbacks import EarlyStopping from keras.callbacks import ReduceLROnPlateau df = pd.read_csv('lorenz.csv') signal = df['signal'].values.reshape(-1, 1) x_train_max = 128 signal_normalize = np.divide(signal, x_train_max) def truncate(x, train_len=100): in_, out_, lbl = [], [], [] for i in range(len(x) - train_len): in_.append(x[i:(i + train_len)].tolist()) out_.append(x[i + train_len]) lbl.append(i) return np.array(in_), np.array(out_), np.array(lbl) X_in, X_out, lbl = truncate(signal_normalize, train_len=50) X_input_train = X_in[np.where(lbl <= 9500)] X_output_train = X_out[np.where(lbl <= 9500)] X_input_test = X_in[np.where(lbl > 9500)] X_output_test = X_out[np.where(lbl > 9500)] # Load model model = load_model("model_forecasting_seq2seq_lstm_lorenz.h5") opt = Adam(lr=1e-5, clipnorm=1) model.compile(loss='mean_squared_error', optimizer=opt, metrics=['mae']) #plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) # Train model early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1, mode='min', restore_best_weights=True) #reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=9, verbose=1, mode='min', min_lr=1e-5) #history = model.fit(X_train, y_train, epochs=500, batch_size=128, validation_data=(X_test, y_test),callbacks=[early_stop]) #model.save("lstm_model_lorenz.h5") # 对测试集进行预测 train_pred = model.predict(X_input_train[:, :, :]) * x_train_max test_pred = model.predict(X_input_test[:, :, :]) * x_train_max train_true = X_output_train[:, :] * x_train_max test_true = X_output_test[:, :] * x_train_max # 计算预测指标 ith_timestep = 10 # Specify the number of recursive prediction steps # List to store the predicted steps pred_len =2 predicted_steps = [] for i in range(X_output_test.shape[0]-pred_len+1): YPred =[],temdata = X_input_test[i,:] for j in range(pred_len): Ypred.append (model.predict(temdata)) temdata = [X_input_test[i,j+1:-1],YPred] # Convert the predicted steps into numpy array predicted_steps = np.array(predicted_steps) # Plot the predicted steps #plt.plot(X_output_test[0:ith_timestep], label='True') plt.plot(predicted_steps, label='Predicted') plt.legend() plt.show()
这段代码看起来是一个用于时间序列预测的深度学习模型。该模型使用了序列到序列 LSTM (Seq2Seq LSTM) 模型进行预测,使用了 EarlyStopping 回调函数来避免过度拟合,并使用 Adam 优化器来进行模型优化。
具体来说,该代码读取了一个名为 'lorenz.csv' 的数据文件,将其中的信号列读取出来并进行了归一化处理。然后,使用 truncate 函数将信号序列切割成训练集和测试集,将其输入到 Seq2Seq LSTM 模型中进行训练。训练完成后,对测试集进行预测并计算预测指标,最后使用 matplotlib 库将预测结果可视化。
如果需要更详细的解释或修改建议,请提出具体问题或要求。
阅读全文