pytorch训练2个类别的cifar10数据集的python代码
时间: 2023-09-27 15:08:44 浏览: 80
以下是一个使用 PyTorch 训练 CIFAR10 数据集的代码示例,其中仅包含两个类别。
```
import torch
import torchvision
import torchvision.transforms as transforms
# 定义数据集转换
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 加载 CIFAR10 数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
# 将数据集分成两个类别(飞机和汽车)
classes = ('plane', 'car')
trainset.targets = [1 if target == 1 else 0 for target in trainset.targets]
# 定义数据加载器
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
# 定义神经网络模型
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 2)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
# 定义损失函数和优化器
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练神经网络
for epoch in range(2): # 多次迭代数据集
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入数据
inputs, labels = data
# 清零梯度缓存、前向传播、计算损失、反向传播、更新权重
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 2000 == 1999: # 每 2000 个小批量数据打印一次
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
希望这个代码示例能够帮到你!
阅读全文