matlab一维unet
时间: 2023-10-15 12:08:32 浏览: 192
UNet是一种深度学习网络,适用于图像分割任务。在MATLAB中,可以使用Deep Learning Toolbox实现一维的UNet网络。以下是一维UNet的示例MATLAB代码:
```matlab
% 加载数据
xTrain = randn(1,1000);
yTrain = [xTrain(2:end), 0];
% 创建UNet网络
numFilters = 16;
inputSize = size(xTrain);
numClasses = 1;
layers = [
imageInputLayer(inputSize)
convolution1dLayer(3,numFilters,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling1dLayer(2,'Stride',2)
convolution1dLayer(3,numFilters*2,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling1dLayer(2,'Stride',2)
convolution1dLayer(3,numFilters*4,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling1dLayer(2,'Stride',2)
convolution1dLayer(3,numFilters*8,'Padding','same')
batchNormalizationLayer
reluLayer
transposedConv1dLayer(2,numFilters*4,'Stride',2)
concatenationLayer(2)
convolution1dLayer(3,numFilters*4,'Padding','same')
batchNormalizationLayer
reluLayer
transposedConv1dLayer(2,numFilters*2,'Stride',2)
concatenationLayer(2)
convolution1dLayer(3,numFilters*2,'Padding','same')
batchNormalizationLayer
reluLayer
transposedConv1dLayer(2,numFilters,'Stride',2)
concatenationLayer(2)
convolution1dLayer(3,numClasses,'Padding','same')
regressionLayer];
% 配置训练选项并训练网络
options = trainingOptions('sgdm','MaxEpochs',10,'MiniBatchSize',64);
net = trainNetwork(xTrain,yTrain,layers,options);
% 使用网络进行预测
xTest = randn(1,1000);
yTest = predict(net,xTest);
```
这段代码创建了一个带有四个下采样和上采样层的UNet网络,用于将一维信号xTrain转换为一维信号yTrain。在训练选项中使用了随机梯度下降(SGDM)优化器,最大训练周期为10,每个小批量大小为64。最后,使用网络对xTest进行预测,并将结果存储在yTest中。
阅读全文