keras中怎么生成'cifar10_architecture.json'
时间: 2023-05-18 09:04:55 浏览: 89
您可以使用以下代码来生成'cifar10_architecture.json'文件:
```python
from keras.datasets import cifar10
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
from keras.models import model_from_json
# 加载CIFAR-10数据集
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# 将标签转换为独热编码
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
# 构建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=x_train.shape[1:]))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_data=(x_test, y_test))
# 保存模型结构
model_json = model.to_json()
with open("cifar10_architecture.json", "w") as json_file:
json_file.write(model_json)
```
这段代码将加载CIFAR-10数据集,构建一个卷积神经网络模型,并将其训练。最后,它将保存模型结构到'cifar10_architecture.json'文件中。
阅读全文