最大流最小割算法python实现
时间: 2023-07-26 17:06:32 浏览: 75
最大流最小割算法常用来解决网络流问题,以下是Python实现:
```
from collections import defaultdict
class Graph:
def __init__(self, vertices):
self.graph = defaultdict(list)
self.V = vertices
# 添加边
def add_edge(self, u, v, w):
self.graph[u].append([v, w])
# BFS算法
def bfs(self, s, t, parent):
visited = [False] * (self.V)
queue = []
queue.append(s)
visited[s] = True
while queue:
u = queue.pop(0)
for ind, val in enumerate(self.graph[u]):
v, w = val
if not visited[v] and w > 0:
queue.append(v)
visited[v] = True
parent[v] = u
return True if visited[t] else False
# Ford Fulkerson算法
def ford_fulkerson(self, source, sink):
parent = [-1] * (self.V)
max_flow = 0
while self.bfs(source, sink, parent):
path_flow = float("Inf")
s = sink
while s != source:
path_flow = min(path_flow, self.graph[parent[s]][s][1])
s = parent[s]
max_flow += path_flow
v = sink
while v != source:
u = parent[v]
self.graph[u][v][1] -= path_flow
self.graph[v][u][1] += path_flow
v = parent[v]
return max_flow
g = Graph(6)
g.add_edge(0, 1, 16)
g.add_edge(0, 2, 13)
g.add_edge(1, 2, 10)
g.add_edge(1, 3, 12)
g.add_edge(2, 1, 4)
g.add_edge(2, 4, 14)
g.add_edge(3, 2, 9)
g.add_edge(3, 5, 20)
g.add_edge(4, 3, 7)
g.add_edge(4, 5, 4)
source = 0
sink = 5
print("最大流量为:", g.ford_fulkerson(source, sink))
```
这里我们自定义了一个Graph类,其中包含了添加边、BFS算法和Ford Fulkerson算法。具体实现步骤是,首先初始化一个Graph类,然后通过add_edge方法添加边,接着调用ford_fulkerson方法计算最大流量。该方法先通过BFS算法寻找增广路径,然后计算路径上的最小容量,更新残留图中每条边的容量,最后返回最大流量。
阅读全文