Error in match.arg(arg = arg, choices = choices, several.ok = several.ok) : 'arg' should be one of “out”, “in”, “all”, “total”

时间: 2024-05-31 15:10:56 浏览: 206
这个错误来自于R语言中的match.arg()函数。它的作用是将参数与可选的选项进行匹配,如果匹配成功则返回参数值,否则会报错。 这个错误的原因可能是因为你在使用match.arg()函数时,指定了一个不在可选选项中的参数。请检查你的代码,确保传递给match.arg()函数的参数值是可选选项之一。如果问题仍然存在,请提供更多的上下文和代码信息,以便更好地帮助你解决问题。
相关问题

运行代码: import scipy.io import mne from mne.bem import make_watershed_bem import random import string # Load .mat files inner_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.inner_skull.mat') outer_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.outer_skull.mat') scalp = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.scalp.mat') print(inner_skull.keys()) # Assuming these .mat files contain triangulated surfaces, we will extract vertices and triangles # This might need adjustment based on the actual structure of your .mat files inner_skull_vertices = inner_skull['Vertices'] inner_skull_triangles = inner_skull['Faces'] outer_skull_vertices = outer_skull['Vertices'] outer_skull_triangles = outer_skull['Faces'] scalp_vertices = scalp['Vertices'] scalp_triangles = scalp['Faces'] subjects_dir = 'E:\MATLABproject\data\MRI\Visit1_040318' subject = ''.join(random.choices(string.ascii_uppercase + string.ascii_lowercase, k=8)) # Prepare surfaces for MNE # Prepare surfaces for MNE surfs = [ mne.make_bem_model(inner_skull_vertices, inner_skull_triangles, conductivity=[0.01], subjects_dir=subjects_dir), # brain mne.make_bem_model(outer_skull_vertices, outer_skull_triangles, conductivity=[0.016], subjects_dir=subjects_dir), # skull mne.make_bem_model(scalp_vertices, scalp_triangles, conductivity=[0.33], subjects_dir=subjects_dir), # skin ] # Create BEM solution model = make_watershed_bem(surfs) solution = mne.make_bem_solution(model) 时报错: Traceback (most recent call last): File "E:\pythonProject\MEG\头模型.py", line 30, in <module> mne.make_bem_model(inner_skull_vertices, inner_skull_triangles, conductivity=[0.01], subjects_dir=subjects_dir), # brain File "<decorator-gen-68>", line 12, in make_bem_model File "E:\anaconda\envs\pythonProject\lib\site-packages\mne\bem.py", line 712, in make_bem_model subject_dir = op.join(subjects_dir, subject) File "E:\anaconda\envs\pythonProject\lib\ntpath.py", line 117, in join genericpath._check_arg_types('join', path, *paths) File "E:\anaconda\envs\pythonProject\lib\genericpath.py", line 152, in _check_arg_types raise TypeError(f'{funcname}() argument must be str, bytes, or ' TypeError: join() argument must be str, bytes, or os.PathLike object, not 'ndarray' 进程已结束,退出代码1

根据错误信息显示,`join()` 函数要求的参数必须是字符串、字节或 os.PathLike 对象,但你传递的是一个 ndarray 对象。 这个问题可能是因为 `subjects_dir` 参数的值不正确。请确保你在调用 `mne.make_bem_model` 函数时传递了正确的 `subjects_dir` 参数。 另外,你在代码中随机生成了一个 `subject` 变量,但它没有在 `mne.make_bem_model` 函数中使用。如果你希望将随机生成的 `subject` 作为参数传递给函数,你需要修改相应的代码。 例如: ```python import os # ... subject = ''.join(random.choices(string.ascii_uppercase + string.ascii_lowercase, k=8)) subjects_dir = 'E:\MATLABproject\data\MRI\Visit1_040318' # Prepare surfaces for MNE surfs = [ mne.make_bem_model(inner_skull_vertices, inner_skull_triangles, conductivity=[0.01], subject=subject, subjects_dir=subjects_dir), # brain mne.make_bem_model(outer_skull_vertices, outer_skull_triangles, conductivity=[0.016], subject=subject, subjects_dir=subjects_dir), # skull mne.make_bem_model(scalp_vertices, scalp_triangles, conductivity=[0.33], subject=subject, subjects_dir=subjects_dir), # skin ] # ... ``` 在这个示例中,我假设你的 `subjects_dir` 是 `'E:\MATLABproject\data\MRI\Visit1_040318'`,并将随机生成的 `subject` 作为参数传递给 `mne.make_bem_model` 函数。请根据你的实际情况修改 `subjects_dir` 的值。 希望这次能解决你的问题!如果还有其他疑问,请随时提问。

implement the UCB algorithm and plot the expected regret as a function of 𝑇 using 1000 sample path simulations with python and Compare this with the greedy algorithm, Total number of periods 𝑇 = 2000, Price choices 𝑝 = 0,1,2,3, … ,19, reward = 10 − 0.5𝑝 + 𝜖, 𝜖~𝑁(0, 0.04)

Sure, I can help you with that. Here is an implementation of the UCB algorithm in Python: ```python import numpy as np def ucb(t, arm_counts, rewards): c = 2 # exploration parameter n_arms = len(arm_counts) ucb_vals = np.zeros(n_arms) total_counts = np.sum(arm_counts) for i in range(n_arms): if arm_counts[i] == 0: ucb_vals[i] = np.inf else: ucb_vals[i] = rewards[i] + c * np.sqrt(np.log(total_counts) / arm_counts[i]) return np.argmax(ucb_vals) # Define parameters T = 2000 p_values = np.arange(0, 20) n_arms = len(p_values) rewards = [10 - 0.5 * p + np.random.normal(0, 0.04) for p in p_values] # Run simulations regret_ucb = np.zeros(T) regret_greedy = np.zeros(T) arm_counts_ucb = np.zeros(n_arms) arm_counts_greedy = np.zeros(n_arms) total_reward_ucb = 0 total_reward_greedy = 0 chosen_arms_ucb = [] chosen_arms_greedy = [] for t in range(T): # UCB algorithm arm_ucb = ucb(t, arm_counts_ucb, rewards) reward_ucb = rewards[arm_ucb] arm_counts_ucb[arm_ucb] += 1 total_reward_ucb += reward_ucb chosen_arms_ucb.append(arm_ucb) regret_ucb[t] = max(rewards) * (t+1) - total_reward_ucb # Greedy algorithm arm_greedy = np.argmax(rewards) reward_greedy = rewards[arm_greedy] arm_counts_greedy[arm_greedy] += 1 total_reward_greedy += reward_greedy chosen_arms_greedy.append(arm_greedy) regret_greedy[t] = max(rewards) * (t+1) - total_reward_greedy # Plot results import matplotlib.pyplot as plt plt.plot(regret_ucb, label="UCB") plt.plot(regret_greedy, label="Greedy") plt.legend() plt.xlabel("Time") plt.ylabel("Expected Regret") plt.show() ``` This code simulates the UCB algorithm and the greedy algorithm for 2000 periods and plots the expected regret as a function of time. It uses 1000 sample paths by default. Note that the UCB algorithm uses an exploration parameter `c` that determines how much to explore versus exploit. In this implementation, `c` is set to 2. The expected regret is calculated as the difference between the maximum possible reward (i.e., the reward of the best arm at each time step) and the total reward obtained by the algorithm up to that time step. You can run this code to see the results for yourself. Let me know if you have any questions!
阅读全文

相关推荐

大家在看

recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

Solar-Wind-Hybrid-Power-plant_matlab_

hybrid solar wind farm using matlab
recommend-type

OZ9350 设计规格书

OZ9350 设计规格书
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

VB航空公司管理信息系统 (源代码+系统)(2024it).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

基于SpringBoot+Vue开发的排课管理系统设计源码

本项目为基于SpringBoot和Vue框架构建的排课管理系统源码,包含228个文件,涵盖139个Java源文件、30个JavaScript文件、24个Vue组件文件、12个PNG图片文件、7个XML配置文件、2个Git忽略文件、2个JSON文件、2个JPG图片文件、1个Markdown文档以及1个LICENSE文件。该系统分为前端Vue界面和后端SpringBoot服务,代码结构清晰,技术选型成熟,非常适合Java编程初学者和计算机专业学生学习和实践使用。
recommend-type

vb图书管理系统(论文+源代码+开题报告+外文翻译+答辩ppt)(20249q).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

YOLOv11 实现游戏中自动钓鱼

检测图片 + 模型
recommend-type

【未发表】基于三角测量拓扑聚合优化器TTAO优化宽度学习BLS实现光伏数据预测算法研究附Matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 替换数据可以直接使用,注释清楚,适合新手
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。