简化function error = fitness(x) %该函数用来计算适应度值 load data inputnum hiddennum outputnum net inputn outputn inputn_test outputps output_test %提取 w1=x(1:inputnum*hiddennum);%取到输入层与隐含层连接的权值 B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);%隐含层神经元阈值 w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);%取到隐含层与输出层连接的权值 B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);%输出层神经元阈值 net.trainParam.showWindow=0; %隐藏仿真界面 %网络权值赋值 net.iw{1,1}=reshape(w1,hiddennum,inputnum);%将w1由1行inputnum*hiddennum列转为hiddennum行inputnum列的二维矩阵 net.lw{2,1}=reshape(w2,outputnum,hiddennum);%更改矩阵的保存格式 net.b{1}=reshape(B1,hiddennum,1);%1行hiddennum列,为隐含层的神经元阈值 net.b{2}=reshape(B2,outputnum,1); %网络训练 net=train(net,inputn,outputn); an=sim(net,inputn_test); test_simu=mapminmax('reverse',an,outputps); error=mse(output_test,test_simu);
时间: 2024-03-04 18:53:21 浏览: 124
fitness.rar_fitness函数_适应度函数
5星 · 资源好评率100%
这段代码是一个用来计算神经网络适应度值的函数。其中涉及到了一些神经网络的基本概念,比如输入层、隐含层、输出层、权值、阈值等。该函数的输入参数是一组权值和阈值,其中包括输入层与隐含层连接的权值、隐含层神经元阈值、隐含层与输出层连接的权值以及输出层神经元阈值。函数主要的操作是将权值和阈值按照一定的格式提取出来,并赋值给一个神经网络模型中对应的参数。然后利用提供的训练数据对神经网络进行训练,得到训练后的网络模型。最后利用测试数据对训练后的神经网络进行测试,并计算预测结果与真实结果之间的均方误差,作为该组权值和阈值的适应度值。
阅读全文