人工智能、机器学习、深度学习的基本概念与区别

时间: 2023-10-10 14:13:42 浏览: 544
PDF

深度学习概念与人工智能技术之间关系 及机器学习与深度学习区别

star5星 · 资源好评率100%
人工智能(AI)是一种技术,它让计算机模拟人类的智能行为和决策过程。 机器学习(ML)是人工智能的一个分支,它关注如何让计算机通过数据学习和改进性能,而不需要显式地编程。机器学习的目标是让计算机自动发现数据中的模式,并用这些模式来做出预测或决策。 深度学习(DL)是机器学习的一种技术,它使用深度神经网络来解决复杂的模式识别和决策问题。深度学习的主要特点是可以处理非常大的数据集,并且可以在训练过程中自动识别最重要的特征。 因此,人工智能是一个更广泛的概念,而机器学习和深度学习是实现人工智能的具体技术。
阅读全文

相关推荐

pdf
⼈⼯智能、机器学习及深度学习的区别与联系 ⼈⼯智能、机器学习及深度学习的区别与联系 ⼀、 ⼀、 说明 说明 1.1 背景说明 背景说明 记得在学校的时候⽕的是⼤数据、云计算和物联⽹,毕业后⽹上就开始很多讨论⼈⼯智能(还有区块链)。当只是⽹上听说的时候总觉得⽐ 较遥远,⼼⾥并没有很⼤的重视,直到有⼀天忘了是下午回去上班还是下午下班,和他⾛在路上的时候他也得到了⼈⼯智能。 他说,你说我们算1+1就是按规定1+1就是等于2,那你知道⼈⼯智能是怎么算1+1的吗,他不是像我们这么算的他是通过学习0.5+0.5=1、 2+2=4这样慢慢去推测1+1等于多少的,所以他算出的1+1不⼀定等于2,当然学习的数据越多结果就越准确。 说到这位⼩哥另外还不得不提,虽然我看书的习惯不是受这位⼩哥的影响⽽形成的,但买书的习惯是受这位⼩哥的影响形成的,可能还有点 青出于蓝的意思,之前我都想着去学校或者区图书馆的,他让我知道可以在亚马逊上买书。当然最近⼀位⼤学同学的⾔传⾝教⼜让我感觉去 图书馆也挺合适的,为啥就不展开了你要懂其实⾃⼰应该可以懂,主要是想说有时经历越多越感觉孔⼦等⼈说的话实在很是经典,⽐如这句 三⼈⾏必有我师焉,每个⼈都有其独特的经历(⾄少相较于你是独特的)每个⼈都有其独特的经验与感悟每个⼈都有其值得你学习、借鉴乃 ⾄敬重的地⽅。所以现在⽽⾔我总愿意接触更多的⼈,去听他们的故事和想法。另外同时也想说,我个⼈⼀直不太喜欢(或者叫敢)对⼀件 事物并不了解就⼈云亦云地对其评头品⾜,⽐如你连四书五经是什么都不知道你就反对(我觉得《⼤学》和《中庸》讲得都还挺好的)或者 再⽐如你连马克思主义是什么都不知道你就反对;我挺佩服这位⼩哥的⼀点感觉他知道⼀点就能侃侃⽽谈,当然最主要的是其判断时常没有 很⼤的偏差。 受此番讨论影响,⼜回家志趣甚⾼地拿起了刚买不久的周志华的那本《机器学习》,然后看着那些复杂的数学符号和公式灰⼼丧⽓地确认⾃ ⼰看不懂,⾃⼰的机器学习之路就此告⼀段落了。说实话到现在关于⾼等数学,我⼤概只模糊记得微分是求导、积分是求⾯积。 到S市后专门做了安全⽅⾯的⼯作,另外说形成了通过买书来学习的习惯,在找书时看到刘焱的AI安全三部曲,⼜是AI⼜是安全的就买了回 来。但感觉其内容和周志华的《机器学习》很不⼀样就有点迷糊了,然后⼜买了《深度学习框架PyTorch⼊门与实践》和《TensorFlow实战 Google深度学习框架》,这两本的内容⼜和前边两本⼜不太⼀样,加之当时代码能⼒⼜有限,只能再次认为⼈⼯智能太过博⼤精深,⾃⼰⼀ 时间是搞不定了。 去年和⼀位朋友学习时也有时会提起⼈⼯智能,我只能根据⾃⼰的感觉判断说机器学习根本不是单纯的⼀种算法⽽是⼀系列算法的集合,这 些算法也不是最近才出现的⽽是很久以前就有了只是现在能收集的数据⽐较多电脑的计算能⼒也上来了所以机器学习⽕了起来,虽然尽量假 装得理直⽓壮但确实没有很多底⽓。 其实每每谈到⼈⼯智能都是这样,如同⾻梗在喉。肺炎打乱了年前的⼀些计划,但困在家也让⾃⼰有时间拿下⼈⼯智能这⼀知识框架⾥边最 后⼀张拼图。 当然也有⼀些曲折,⼀是在家时间长了⼯作学习的效率就⽐较低,⼆是本来想好的腾出⼀周时间中间⼜抽了⼏天加班,三是连接GitHub等国 外的⽹站速度⽐较慢梯⼦在这时期⼜被封了下了⽂件下半天甚⾄失败很坏⼼情,四是⼀⽅⾯周志华的那本《机器学习》给的阴影⽐较⼤另⼀ ⽅⾯有⼀些其他的事可以去做如同⾯临围城必缺态度有点消极。不过好在⼀是这⼀年多来编程有很⼤的进步,⼆是上边说到的⼏本书也算是 翻过了⼏轮不须要重头理解,三是最重要的昨天看了《Web安全机器学习⼊门》这本书在GitHub上的源代码每个例⼦也就⼀百来⾏容易看 懂。 1.2 内容说明 内容说明 本⽂⼤数多内容总结⾃刘焱的AI安全三部曲:《Web安全机器学习⼊门》、《Web安全深度学习实践》、《Web安全强化学习与GAN》。 刘焱GitHub地址:(三本书对应的项⽬依次是1book、2book、3book) 另外对项⽬⽬录结构做⼀些说明:《Web安全机器学习⼊门》各章节与1book各python⽂件对应关系书中有明确说明;《Web安全深度学习 实践》基本是⼀章⼀个python代码⽂件,在每章的开头都有说明本章对应的代码⽂件是哪个,另外也可直接⾃⾏按单节名与⽂件名对应。 ⼆、⼈⼯智能、机器学习和深度学习 ⼆、⼈⼯智能、机器学习和深度学习 2.1 三者定义与关系 三者定义与关系 ⼈⼯智能:凡是有if-else等分⽀语句的程序都可以算是⼈⼯智能。⽐如没检测到⼈进门时不开灯检测到⼈进门就开灯这种就可以算⼈⼯智 能。 机器学习:假设特征x和输出结果y的关系为y = w(x),我们得出l = (y1 - y1') ^2 + (y2 - y2') ^2 + ... = (y1
pdf
⼈⼯智能、机器学习与深度学习的区别与联系 你是否也有这样的疑惑,⼈⼯智能、机器学习、深度学习以及监督学习等名词之间到底有什么样的联系与区别,以及它们的应⽤场景呢。 下⾯就通过概念、区别和联系以及应⽤场景三个⽅⾯来具体的分析下他们。 ⼀、概念 1、⼈⼯智能 ⼈⼯智能(Artificial intelligence)简称AI。⼈⼯智能是计算机科学的⼀个分⽀,它企图了解智能的本质,并⽣产出⼀种新的能以⼈类智 能相似的⽅式做出反应的智能机器,是研究、开发⽤于模拟、延伸和扩展⼈的智能的理论、⽅法、技术及应⽤系统的⼀门新的技术科学。 ⼈⼯智能⽬前分为弱⼈⼯智能和强⼈⼯智能和超⼈⼯智能。 1)弱⼈⼯智能:弱⼈⼯智能(ArtificialNarrow Intelligence /ANI),只专注于完成某个特定的任务,例如语⾳识别、图象识别和翻译 等,是擅长于单个⽅⾯的⼈⼯智能。它们只是⽤于解决特定的具体类的任务问题⽽存在,⼤都是统计数据,以此从中归纳出模型。由于弱⼈ ⼯智能智能处理较为单⼀的问题,且发展程度并没有达到模拟⼈脑思维的程度,所以弱⼈⼯智能仍然属于"⼯具"的范畴,与传统的"产 品"在本质上并⽆区别。 2) 强⼈⼯智能:强⼈⼯智能(Artificial Generallnteligence /AGI),属于⼈类级别的⼈⼯智能,在各⽅⾯都能和⼈类⽐肩,它能够进⾏ 思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作,并且和⼈类⼀样得⼼应⼿。 3)超⼈⼯智能:超⼈⼯智能(Artificial Superintelligence/ASI),在⼏乎所有领域都⽐最聪明的⼈类⼤脑都聪明许多,包括科学创 新、通识和社交技能。在超⼈⼯智能阶段,⼈⼯智能已经跨过"奇点",其计算和思维能⼒已经远超⼈脑。此时的⼈⼯智能已经不是⼈类可 以理解和想象。⼈⼯智能将打破⼈脑受到的维度限制,其所观察和思考的内容,⼈脑已经⽆法理解,⼈⼯智能将形成⼀个新的社会。 ⽬前我们仍处于弱⼈⼯智能阶段。 2、机器学习 机器学习(MachineLearning)简称ML。机器学习属于⼈⼯智能的⼀个分⽀,也是⼈⼯智能的和核⼼。机器学习理论主要是设计和分析 ⼀些让计算机可以⾃动"学习"的算法。 3、深度学习 深度学习(DeepLearning)简称DL。最初的深度学习是利⽤深度神经⽹络来解决特征表达的⼀种学习过程。深度神经⽹络本⾝并不是 ⼀个全新的概念,可⼤致理解为包含多个隐含层的神经⽹络结构。为了提⾼深层神经⽹络的训练效果,⼈们对神经元的连接⽅法和激活函数 等⽅⾯做出相应的调整。深度学习是机器学习研究中的⼀个新的领域,其动机在于建⽴、模拟⼈脑进⾏分析学习的神经⽹络,它模仿⼈脑的 机制来解释数据,如图象、声⾳、⽂本。 注意:你可能在接触深度学习的时候也听到过监督学习、⾮监督学习、半监督学习等概念,下⾯就顺便对这三个名词解析下: 1)监督学习:⽤⼀部分已知分类、有标记的样本来训练机器后,让它⽤学到的特征,对没有还分类、⽆标记的样本进⾏分类、贴标签。多 ⽤于分类。 2)⾮监督学习:所有的数据没有标记,类别未知,让它⾃⼰学习样本之间的相似性来进⾏分类。多⽤于聚类。 3)半监督学习:有两个样本集,⼀个有标记,⼀个没有标记。综合利⽤有类标的样本( labeled sample)和没有类标的样本( unlabeled sample),来⽣成合适的分类。 ⼆、区别于联系 下⾯⼀张图能更加细分其关系: 注意:在上幅图中,我们可以看下机器学习下的深度学习和监督学习以及⾮监督学习,那它们之间是什么关系呢,其实就是分类⽅法不同⽽ 已,他们之间可以互相包含。打个⽐⽅:⼀个⼈按性别可以分为男⼈和⼥⼈,⽽按年龄来分可以分为⽼⼈和⼩孩⼦。所以在深度学习中我们 可以⽤到监督学习和⾮监督学习,⽽监督学习中可以⽤到很基础的不含神经元的算法(KNN算法)也可以⽤到添加了多层神经元的深度学习 算法。 三、应⽤场景 1) ⼈⼯智能的研究领域在不断的扩⼤,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、⾃然语⾔处理、推荐系统等。并 且⽬前的科研⼯作都集中在弱⼈⼯智能这部分。 2) 机器学习直接来源于早期的⼈⼯智能领域,传统的算法包括决策树、聚类、贝叶斯分类、⽀持向量机、EM、Adaboost等等。从学习 ⽅法上来分,机器学习可以分为监督学习(如分类问题)、⽆监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。传统的 机器学习算法在指纹识别、⼈脸检测、特征物体检测等领域的应⽤基本达到了商业化的要求或特定场景的商业化⽔平。 3) 深度学习本来并不是⼀种独⽴的学习⽅法,其本⾝也会⽤到监督学习和⽆监督学习⽅法来训练深度神经⽹络,但由于近年来改领域发 展迅猛,⼀些特有的学习⼿段相继被提出(如残差

最新推荐

recommend-type

lammps-reaxff-机器学习-电化学.pdf

预习视频会引导学员理解机器学习的基本概念,如分类、回归、聚类等。Python是机器学习的常用编程语言,课程会涵盖Python的基础语法、Numpy矩阵运算以及Matplotlib数据可视化。深度学习是机器学习的一个分支,主要...
recommend-type

深度学习报告---综述.docx

深度学习是一种人工智能领域的核心技术,它基于大量的数据和复杂的模型,使机器能够自动学习并改进其性能。本报告详细概述了深度学习的基础及其在各种领域的应用。深度学习的核心是神经网络,这是一种模仿人脑神经元...
recommend-type

深度学习精华汇总.pdf

深度学习是人工智能领域中最为重要的分支之一,它的应用涉及到计算机视觉、自然语言处理、语音识别等多个领域。本文档对深度学习的基本概念、优缺点和主流的几种算法进行了详细的介绍。 基本概念 深度学习是机器...
recommend-type

深度学习ufldl英文版pdf下载

本教程专注于无监督特征学习(Unsupervised Feature Learning)与深度学习(Deep Learning)的核心概念。由吴恩达教授及其团队编纂,是人工智能领域初学者的重要参考资料。通过学习本教程,你不仅将理解这些理论,还...
recommend-type

MATLAB 人工智能实验设计 基于BP神经网络的鸢尾花分类器设计

在本实验中,我们将探索如何使用MATLAB设计一个基于反向传播(BP)神经网络的鸢尾花分类器。这个实验旨在让学生理解分类问题的基本概念,并掌握利用BP...通过实践,学生能够更好地理解和应用深度学习和机器学习的概念。
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。