arima-LSTM混合模型代码
时间: 2023-07-29 18:12:17 浏览: 243
以下是一个简单的Python代码,演示如何使用ARIMA和LSTM进行时间序列预测的混合模型:
```python
import pandas as pd
import numpy as np
from statsmodels.tsa.arima_model import ARIMA
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
# 载入数据
data = pd.read_csv('data.csv', header=None, index_col=0, parse_dates=True, squeeze=True)
# 拆分数据集为训练集和测试集
train_size = int(len(data) * 0.8)
train, test = data[0:train_size], data[train_size:len(data)]
# ARIMA模型
model_arima = ARIMA(train, order=(5, 1, 0))
model_arima_fit = model_arima.fit(disp=0)
print(model_arima_fit.summary())
# LSTM模型
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 3
trainX, trainY = create_dataset(train.values, look_back)
testX, testY = create_dataset(test.values, look_back)
trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
model_lstm = Sequential()
model_lstm.add(LSTM(4, input_shape=(1, look_back)))
model_lstm.add(Dense(1))
model_lstm.compile(loss='mean_squared_error', optimizer='adam')
model_lstm.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)
# 模型预测
train_predict_arima = model_arima_fit.predict(start=1, end=len(train), dynamic=False)
test_predict_arima = model_arima_fit.predict(start=len(train)+1, end=len(data), dynamic=False)
train_predict_lstm = model_lstm.predict(trainX)
test_predict_lstm = model_lstm.predict(testX)
# 将ARIMA和LSTM模型的预测结果合并
train_predict = (train_predict_arima + train_predict_lstm.reshape(train_predict_arima.shape)) / 2
test_predict = (test_predict_arima + test_predict_lstm.reshape(test_predict_arima.shape)) / 2
# 输出预测结果
print(train_predict)
print(test_predict)
```
注:此代码仅供参考,具体实现需要根据实际数据进行调整和优化。
阅读全文