禁忌搜索算法的柔性作业车间调度用C语言实现
时间: 2023-08-27 14:07:12 浏览: 104
禁忌搜索算法(Tabu Search)是一种常见的优化算法,可以用于求解各种组合优化问题,包括柔性作业车间调度问题。下面是一个简单的禁忌搜索算法的柔性作业车间调度的C语言实现:
```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define MAX_JOBS 20
#define MAX_MACHINES 5
#define MAX_ITERATIONS 1000
#define MAX_TABU_SIZE 10
int jobs[MAX_JOBS][MAX_MACHINES];
int machines[MAX_JOBS][MAX_MACHINES];
int durations[MAX_JOBS][MAX_MACHINES];
int tabu_list[MAX_TABU_SIZE][2];
int best_solution[MAX_JOBS];
int current_solution[MAX_JOBS];
int best_cost, current_cost;
int n_jobs, n_machines;
void read_input_data() {
printf("Number of jobs: ");
scanf("%d", &n_jobs);
printf("Number of machines: ");
scanf("%d", &n_machines);
printf("Enter job durations:\n");
for (int i = 0; i < n_jobs; i++) {
for (int j = 0; j < n_machines; j++) {
scanf("%d", &durations[i][j]);
}
}
}
void initialize() {
srand(time(NULL));
for (int i = 0; i < n_jobs; i++) {
for (int j = 0; j < n_machines; j++) {
jobs[i][j] = i;
machines[i][j] = j;
}
}
for (int i = 0; i < n_jobs; i++) {
for (int j = 0; j < n_machines - 1; j++) {
int k = rand() % (n_machines - j) + j;
int temp = machines[i][j];
machines[i][j] = machines[i][k];
machines[i][k] = temp;
}
}
for (int i = 0; i < MAX_TABU_SIZE; i++) {
tabu_list[i][0] = -1;
tabu_list[i][1] = -1;
}
for (int i = 0; i < n_jobs; i++) {
current_solution[i] = i;
}
best_cost = current_cost = calculate_cost(current_solution);
for (int i = 0; i < n_jobs; i++) {
best_solution[i] = current_solution[i];
}
}
int calculate_cost(int* solution) {
int cost = 0;
int finish_times[MAX_MACHINES] = {0};
for (int i = 0; i < n_jobs; i++) {
int job = solution[i];
int machine = machines[job][0];
int duration = durations[job][machine];
for (int j = 1; j < n_machines; j++) {
int next_machine = machines[job][j];
int next_duration = durations[job][next_machine];
if (finish_times[machine] > finish_times[next_machine]) {
machine = next_machine;
duration = next_duration;
} else {
duration = finish_times[machine] - finish_times[next_machine] + next_duration;
}
}
finish_times[machine] += duration;
cost += finish_times[machine];
}
return cost;
}
void update_tabu_list(int machine1, int machine2) {
for (int i = 0; i < MAX_TABU_SIZE; i++) {
if (tabu_list[i][0] == -1 && tabu_list[i][1] == -1) {
tabu_list[i][0] = machine1;
tabu_list[i][1] = machine2;
return;
}
}
for (int i = 0; i < MAX_TABU_SIZE - 1; i++) {
tabu_list[i][0] = tabu_list[i+1][0];
tabu_list[i][1] = tabu_list[i+1][1];
}
tabu_list[MAX_TABU_SIZE-1][0] = machine1;
tabu_list[MAX_TABU_SIZE-1][1] = machine2;
}
int is_tabu(int machine1, int machine2) {
for (int i = 0; i < MAX_TABU_SIZE; i++) {
if (tabu_list[i][0] == machine1 && tabu_list[i][1] == machine2) {
return 1;
}
}
return 0;
}
void search() {
int iterations = 0;
while (iterations < MAX_ITERATIONS) {
int best_i = -1, best_j = -1, best_cost = 0x7fffffff;
for (int i = 0; i < n_jobs; i++) {
for (int j = i+1; j < n_jobs; j++) {
int temp = machines[current_solution[i]][0];
machines[current_solution[i]][0] = machines[current_solution[j]][0];
machines[current_solution[j]][0] = temp;
int cost = calculate_cost(current_solution);
if (cost < best_cost && !is_tabu(i, j)) {
best_i = i;
best_j = j;
best_cost = cost;
}
temp = machines[current_solution[i]][0];
machines[current_solution[i]][0] = machines[current_solution[j]][0];
machines[current_solution[j]][0] = temp;
}
}
if (best_i == -1 && best_j == -1) {
break;
}
int temp = machines[current_solution[best_i]][0];
machines[current_solution[best_i]][0] = machines[current_solution[best_j]][0];
machines[current_solution[best_j]][0] = temp;
update_tabu_list(best_i, best_j);
for (int i = 0; i < n_jobs; i++) {
current_solution[i] = best_solution[i];
}
current_cost = best_cost;
if (current_cost < best_cost) {
best_cost = current_cost;
for (int i = 0; i < n_jobs; i++) {
best_solution[i] = current_solution[i];
}
}
iterations++;
}
}
void print_results() {
printf("Best solution: ");
for (int i = 0; i < n_jobs; i++) {
printf("%d ", best_solution[i]);
}
printf("\n");
printf("Best cost: %d\n", best_cost);
}
int main() {
read_input_data();
initialize();
search();
print_results();
return 0;
}
```
其中,`read_input_data()`函数用于读入输入数据,`initialize()`函数用于初始化算法参数和随机生成初始解,`calculate_cost()`函数用于计算解的目标函数值,`update_tabu_list()`函数用于更新禁忌列表,`is_tabu()`函数用于判断某个解是否在禁忌列表中,`search()`函数是实现禁忌搜索算法的核心部分,`print_results()`函数用于输出结果。
在这个实现中,我们使用了一个`machines`数组来表示每个工件在不同机器上的加工顺序,使用一个`tabu_list`数组来表示禁忌列表,其中每个元素是一个长度为2的数组,表示交换了哪两个工件。我们随机生成了一个初始解,并使用禁忌搜索算法来不断改进该解,直到达到最大迭代次数或者找到最优解为止。
阅读全文