基于深度聚类的单通道语音分离代码
时间: 2023-05-27 19:03:37 浏览: 264
本文提供一份基于深度聚类的单通道语音分离的代码实现,主要采用了Python和Keras框架。
1. 准备数据
首先需要准备两组音频数据,分别是混合语音和原始语音。可以自己录制或者下载一些现成的数据。
2. 数据预处理
将音频数据转换为频谱图,并对其进行归一化处理。
```python
import os
import numpy as np
import librosa
def load_data(path):
X = []
for filename in os.listdir(path):
if "." not in filename:
X.append(librosa.load(path + "/" + filename, sr = 16000)[0])
X = np.array(X)
return X
def create_spectrogram(data):
n_fft = 1024
hop_length = 256
window = "hamming"
eps = 1e-10
spectrograms = []
for i in range(data.shape[0]):
spec = librosa.stft(data[i], n_fft=n_fft, hop_length=hop_length, window=window)
mag = np.abs(spec)
mag = np.log10(eps + mag)
mag -= mag.min()
mag /= mag.max()
spectrograms.append(mag)
return np.array(spectrograms)
def preprocess_data(mix_path, source_path):
mix_data = load_data(mix_path)
source_data = load_data(source_path)
mix_spectrograms = create_spectrogram(mix_data)
source_spectrograms = create_spectrogram(source_data)
X, y = mix_spectrograms, source_spectrograms
return X, y
X_train, y_train = preprocess_data("train/mix", "train/source")
X_test, y_test = preprocess_data("test/mix", "test/source")
```
3. 构建模型
本例中采用了一个简单的多层感知器(MLP)模型,用于对频谱图进行聚类。
```python
from keras.models import Sequential
from keras.layers import Dense, Activation
def build_model(input_size):
model = Sequential()
model.add(Dense(512, input_dim=input_size))
model.add(Activation('relu'))
model.add(Dense(256))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dense(input_size))
return model
model = build_model(X_train.shape[1])
model.compile(loss='mse', optimizer='adam')
```
4. 训练模型
使用训练集数据对模型进行训练,并保存权重。
```python
model.fit(X_train, y_train, epochs=50, batch_size=64)
model.save_weights("weights.h5")
```
5. 测试模型
使用测试集数据进行测试,并输出结果。
```python
def prediction_to_audio(prediction):
n_fft = 1024
hop_length = 256
window = "hamming"
spec = librosa.db_to_amplitude(prediction)
signal = librosa.istft(spec, hop_length=hop_length, window=window)
return signal
def separate_audio(model, mix_data):
mix_spectrogram = create_spectrogram([mix_data])
prediction = model.predict(mix_spectrogram)
source_spectrogram = prediction_to_audio(prediction)[0]
return source_spectrogram
mix_data = librosa.load("test/mix/1.wav", sr=16000)[0]
source_data = separate_audio(model, mix_data)
librosa.output.write_wav("output.wav", source_data, sr=16000)
```
以上就是基于深度聚类的单通道语音分离的代码实现。代码还可以通过优化模型结构、增加数据量等方式进行改进。
阅读全文