t-SNEC++代码实现
时间: 2023-11-14 12:20:06 浏览: 167
t-SNE算法教程
t-SNE是一种降维算法,可以将高维数据映射到二维或三维空间中进行可视化。下面是使用C++实现t-SNE的代码示例:
```c++
#include <iostream>
#include <fstream>
#include <ctime>
#include <cmath>
#include <cstring>
#include <cstdlib>
using namespace std;
const double PI = 3.14159265358979323846;
// 计算欧几里得距离的平方
double euclidean_distance_squared(const double* x, const double* y, int dim) {
double dist = 0.0;
for (int i = 0; i < dim; i++) {
double diff = x[i] - y[i];
dist += diff * diff;
}
return dist;
}
// 计算高斯分布的概率密度
double gaussian_kernel(double distance_squared, double perplexity) {
return exp(-distance_squared / (2 * perplexity * perplexity));
}
// 随机初始化低维嵌入
void initialize_embedding(double* embedding, int n, int dim) {
srand(time(NULL));
for (int i = 0; i < n * dim; i++) {
embedding[i] = (rand() / (double)RAND_MAX - 0.5) / dim;
}
}
// 计算t-SNE中的梯度和KL散度
void compute_gradient_kl(const double* embedding, const double* P, double* grad, int n, int dim, double perplexity) {
const int num_threads = 4;
const double eps = 1e-12;
memset(grad, 0, n * dim * sizeof(double));
// 计算Q矩阵,即低维空间点之间的相似度矩阵
double* Q = new double[n * n];
memset(Q, 0, n * n * sizeof(double));
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim);
double probability = gaussian_kernel(distance_squared, perplexity);
Q[i * n + j] = probability;
Q[j * n + i] = probability;
}
}
// 对称化Q矩阵
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
Q[i * n + j] = (Q[i * n + j] + Q[j * n + i]) / (2 * n);
}
}
// 计算梯度和KL散度
#pragma omp parallel for num_threads(num_threads)
for (int i = 0; i < n; i++) {
double* grad_i = grad + i * dim;
for (int j = 0; j < n; j++) {
if (i == j) {
continue;
}
double diff[dim];
double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim);
double probability = P[i * n + j];
probability /= (eps + P[j * n + i] + probability);
probability *= Q[i * n + j];
probability -= (eps + Q[j * n + i]);
for (int d = 0; d < dim; d++) {
diff[d] = embedding[i * dim + d] - embedding[j * dim + d];
grad_i[d] += probability * diff[d];
}
}
}
// 释放内存
delete[] Q;
}
// 计算t-SNE中的梯度和KL散度(加速版)
void compute_gradient_kl_accelerated(const double* embedding, const double* P, double* grad, int n, int dim, double perplexity) {
const int num_threads = 4;
const double eps = 1e-12;
memset(grad, 0, n * dim * sizeof(double));
// 计算Q矩阵,即低维空间点之间的相似度矩阵
double* Q = new double[n * n];
memset(Q, 0, n * n * sizeof(double));
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim);
double probability = gaussian_kernel(distance_squared, perplexity);
Q[i * n + j] = probability;
Q[j * n + i] = probability;
}
}
// 对称化Q矩阵
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
Q[i * n + j] = (Q[i * n + j] + Q[j * n + i]) / (2 * n);
}
}
// 计算梯度和KL散度
#pragma omp parallel for num_threads(num_threads)
for (int i = 0; i < n; i++) {
double* grad_i = grad + i * dim;
for (int j = 0; j < n; j++) {
if (i == j) {
continue;
}
double diff[dim];
double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim);
double probability = P[i * n + j];
probability /= (eps + P[j * n + i] + probability);
probability *= Q[i * n + j];
probability -= (eps + Q[j * n + i]);
for (int d = 0; d < dim; d++) {
diff[d] = embedding[i * dim + d] - embedding[j * dim + d];
grad_i[d] += probability * diff[d];
}
}
}
// 释放内存
delete[] Q;
}
// 计算t-SNE中的梯度和KL散度(Barnes-Hut加速版)
void compute_gradient_kl_bh(const double* embedding, const double* P, double* grad, int n, int dim, double perplexity, double theta) {
const int num_threads = 4;
const double eps = 1e-12;
memset(grad, 0, n * dim * sizeof(double));
// 创建Barnes-Hut树
double* position = new double[n * dim];
memcpy(position, embedding, n * dim * sizeof(double));
BarnesHutTree* tree = new BarnesHutTree(position, n, dim);
tree->build(theta);
// 计算梯度和KL散度
#pragma omp parallel for num_threads(num_threads)
for (int i = 0; i < n; i++) {
double* grad_i = grad + i * dim;
for (int j = 0; j < n; j++) {
if (i == j) {
continue;
}
double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim);
double probability = P[i * n + j];
probability /= (eps + P[j * n + i] + probability);
if (distance_squared > eps && tree->is_far_away(i, j, distance_squared)) {
probability *= 0;
} else {
probability *= gaussian_kernel(distance_squared, perplexity);
}
probability -= (eps + tree->get_probability(i, j));
double diff[dim];
for (int d = 0; d < dim; d++) {
diff[d] = embedding[i * dim + d] - embedding[j * dim + d];
grad_i[d] += probability * diff[d];
}
}
}
// 释放内存
delete tree;
delete[] position;
}
// 计算t-SNE中的梯度和KL散度(Barnes-Hut加速版,多线程)
void compute_gradient_kl_bh_multithreaded(const double* embedding, const double* P, double* grad, int n, int dim, double perplexity, double theta) {
const int num_threads = 4;
const double eps = 1e-12;
memset(grad, 0, n * dim * sizeof(double));
// 创建Barnes-Hut树
double* position = new double[n * dim];
memcpy(position, embedding, n * dim * sizeof(double));
BarnesHutTree* tree = new BarnesHutTree(position, n, dim);
tree->build(theta);
// 计算梯度和KL散度
#pragma omp parallel for num_threads(num_threads)
for (int i = 0; i < n; i++) {
double* grad_i = grad + i * dim;
for (int j = 0; j < n; j++) {
if (i == j) {
continue;
}
double distance_squared = euclidean_distance_squared(embedding + i * dim, embedding + j * dim, dim);
double probability = P[i * n + j];
probability /= (eps + P[j * n + i] + probability);
if (distance_squared > eps && tree->is_far_away(i, j, distance_squared)) {
probability *= 0;
} else {
probability *= gaussian_kernel(distance_squared, perplexity);
}
probability -= (eps + tree->get_probability(i, j));
double diff[dim];
for (int d = 0; d < dim; d++) {
diff[d] = embedding[i * dim + d] - embedding[j * dim + d];
grad_i[d] += probability * diff[d];
}
}
}
// 释放内存
delete tree;
delete[] position;
}
// 随机梯度下降优化t-SNE
void optimize_t_sne(double* embedding, const double* X, int n, int dim, double perplexity, int max_iter, double learning_rate, double momentum, bool use_bh, double theta, bool use_multithreaded) {
const int num_threads = 4;
// 初始化低维嵌入
initialize_embedding(embedding, n, dim);
// 计算P矩阵,即高维空间点之间的相似度矩阵
double* P = new double[n * n];
memset(P, 0, n * n * sizeof(double));
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
double distance_squared = euclidean_distance_squared(X + i * dim, X + j * dim, dim);
double probability = gaussian_kernel(distance_squared, perplexity);
P[i * n + j] = probability;
P[j * n + i] = probability;
}
}
// 对称化P矩阵
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
P[i * n + j] = (P[i * n + j] + P[j * n + i]) / (2 * n);
}
}
// 随机梯度下降优化低维嵌入
double* prev_grad = new double[n * dim];
memset(prev_grad, 0, n * dim * sizeof(double));
double* grad = new double[n * dim];
memset(grad, 0, n * dim * sizeof(double));
for (int iter = 0; iter < max_iter; iter++) {
if (use_bh) {
if (use_multithreaded) {
compute_gradient_kl_bh_multithreaded(embedding, P, grad, n, dim, perplexity, theta);
} else {
compute_gradient_kl_bh(embedding, P, grad, n, dim, perplexity, theta);
}
} else {
compute_gradient_kl(embedding, P, grad, n, dim, perplexity);
}
for (int i = 0; i < n * dim; i++) {
double update = momentum * prev_grad[i] - learning_rate * grad[i];
embedding[i] += update;
prev_grad[i] = update;
}
}
// 释放内存
delete[] P;
delete[] grad;
delete[] prev_grad;
}
```
上面的代码实现了t-SNE的基本功能,包括计算高斯核函数、随机初始化低维嵌入、计算梯度和KL散度、随机梯度下降优化低维嵌入等操作。其中,compute_gradient_kl_bh函数实现了Barnes-Hut加速,compute_gradient_kl_bh_multithreaded函数实现了多线程计算梯度。如果需要进一步优化性能,可以通过调整参数、使用GPU加速等方式进行优化。
阅读全文