for (int camera_index = 0; camera_index < this->m_safe_camera_list.size(); ++camera_index) { camera* cam = &(this->m_safe_camera_list[camera_index]); if (cam->m_is_exter_calib_check_mark == true) { // as a Internal reference K of the camera, the K-1 is : // 1/ax 0 -px/ax // 0 1/ay -py/ay // 0 0 1 Eigen::Matrix3f invk; invk.setIdentity(); invk(0, 0) = 1.0 / cam->m_inter_calib(0, 0); invk(0, 2) = -1.0 * cam->m_inter_calib(0, 2) / cam->m_inter_calib(0, 0); invk(1, 1) = 1.0 / cam->m_inter_calib(1, 1); invk(1, 2) = -1.0 * cam->m_inter_calib(1, 2) / cam->m_inter_calib(1, 1); Eigen::Vector3f tmp_t_verts = cam->m_exter_calib.topRightCorner(3, 1); Eigen::Matrix3f tmp_inv_r_mat= cam->m_exter_calib.topLeftCorner(3, 3).transpose(); Eigen::Vector3f tmp_root_point = -tmp_inv_r_mat * tmp_t_verts; for (int pose_index = 0; pose_index < cam->m_2D_pose_list.size(); ++pose_index) { Eigen::MatrixXf pose = cam->m_2D_pose_list[pose_index]; // check the pose's Confidence, if all the joints's confidiance is smaller than the gain, drop out float confidence = pose.row(2).maxCoeff(); if (confidence < this->m_joint_confidence_gian) { continue; }; my_radials tmpradials; tmpradials.m_2d_pose = pose; tmpradials.m_root_point = tmp_root_point; tmpradials.m_radials_points = (invk * pose.topRows(2).colwise().homogeneous()).colwise().normalized(); tmpradials.m_radials_points = tmp_inv_r_mat * tmpradials.m_radials_points; tmpradials.m_3d_pose_ID = -1; tmpradials.m_camera_index = camera_index; tmpradials.m_poes_index = pose_index; tmpradials.m_pose_confidence = pose.row(2).leftCols(7).sum(); this->m_3d_radials.push_back(tmpradials); } } }

时间: 2024-03-28 16:39:06 浏览: 14
这段代码是一个 for 循环,遍历了一个名为 m_safe_camera_list 的相机列表。对于列表中的每个相机,如果其 m_is_exter_calib_check_mark 属性为 true,则进行以下操作: 1. 计算相机的内参矩阵 K 的逆矩阵 invk,其中 K 的值被存储在相机的 m_inter_calib 属性中; 2. 计算相机的外参矩阵 m_exter_calib 的逆矩阵的转置矩阵 tmp_inv_r_mat; 3. 根据 tmp_inv_r_mat 和 m_exter_calib 中的平移向量计算相机在世界坐标系下的位置 tmp_root_point; 4. 遍历相机 m_2D_pose_list 中的姿态,对于每个姿态: - 检查该姿态的置信度是否大于设定的阈值 m_joint_confidence_gian,如果不是则跳过; - 构建一个名为 tmpradials 的结构体,存储该姿态的相关信息,包括姿态的 2D 坐标、3D 坐标、相机索引、姿态索引等; - 将 tmpradials 添加到名为 m_3d_radials 的结构体列表中。 整个代码的作用是将相机的 2D 姿态转换为 3D 姿态,并将结果存储在 m_3d_radials 中。
相关问题

帮我检查下这段代码哪里有问题:// #pragma once #include<iostream> using namespace std; template<class T> class Myarray { public: Myarray(int Capa) { cout << "M的有残调用" << endl; this->m_Capay = Capa; this->m_size = 0; this->pAdress = new T[this->m_Capay] } Myarray(const Myarray& arr) { cout << "M的拷贝调用" << endl; this->m_Capay = arr.m_Capay; this->m_size = arr.m_Capay; //this->pAdress = arr.pAdress; this->pAdress = new T[arr.m_Capay]; for (int i = 0; i < this->m_size; i++) { this->pAdress[i] = arr.pAdress[i]; } } Myarray& operator=(const Myarray& arr) { cout << "M的有operat用" << endl; if (this->pAdress != NULL) { delete[] this->pAdress; this->pAdress = NULL; this->m_Capay = 0; this->m_size = 0 } this->m_Capay = arr.m_Capay; this->m_size = arr.m_size; this->pAdress = new T[arr.m_Capay]; for (int i = 0; i < m_size; i++) { this->pAdress[i] = arr.pAdress[i]; } return *this; } ~Myarray() { if (this->pAdress != NULL) { cout << "M的西沟调用" << endl; delete[] this->pAdress; this->pAdress = NULL; } } private: T* pAdress; int m_Capay; int m_size; };

在第13行,构造函数的语句 `this->pAdress = new T[this->m_Capay]` 末尾缺少分号`;`,应该修改为: ``` this->pAdress = new T[this->m_Capay]; ``` 在第27行,赋值运算符的语句 `this->m_size = arr.m_Capay;` 应该修改为: ``` this->m_size = arr.m_size; ``` 在第34行,赋值运算符的语句 `this->m_size = arr.m_size;` 应该修改为: ``` this->m_size = arr.m_size; ``` 在第38行,析构函数的语句 `this->m_size = 0` 末尾缺少分号`;`,应该修改为: ``` this->m_size = 0; ``` 修改后的代码如下: ``` #pragma once #include<iostream> using namespace std; template<class T> class Myarray { public: Myarray(int Capa) { cout << "M的有残调用" << endl; this->m_Capay = Capa; this->m_size = 0; this->pAdress = new T[this->m_Capay]; } Myarray(const Myarray& arr) { cout << "M的拷贝调用" << endl; this->m_Capay = arr.m_Capay; this->m_size = arr.m_size; //this->pAdress = arr.pAdress; this->pAdress = new T[arr.m_Capay]; for (int i = 0; i < this->m_size; i++) { this->pAdress[i] = arr.pAdress[i]; } } Myarray& operator=(const Myarray& arr) { cout << "M的有operat用" << endl; if (this->pAdress != NULL) { delete[] this->pAdress; this->pAdress = NULL; this->m_Capay = 0; this->m_size = 0; } this->m_Capay = arr.m_Capay; this->m_size = arr.m_size; this->pAdress = new T[arr.m_Capay]; for (int i = 0; i < m_size; i++) { this->pAdress[i] = arr.pAdress[i]; } return *this; } ~Myarray() { if (this->pAdress != NULL) { cout << "M的西沟调用" << endl; delete[] this->pAdress; this->pAdress = NULL; } } private: T* pAdress; int m_Capay; int m_size; }; ```

#pragma once #include<iostream> using namespace std; template<class T> class MyArray { public: // 有参构造 MyAddress(int capacity) { this->m_Capacity = capacity; this->m_Size = 0; this->pAddress = new T[this->m_Capacity]; } // 析构函数 ~MyArray() { if (this->pAddress != NULL) { delete[]this->pAddress; this->MyAddress = NULL; } } // 拷贝构造 MyArray(const MyArray& arr) { this->m_Capacity = arr.m_Capacity; this->m_Size = arr.m_Size; /*this->pAddress = arr.pAddress;*/// 浅拷贝 this->pAddress = new T[arr.m_Capacity];// 深拷贝 // 将arr中的数据都拷贝过来 for (int i = 0; i < this->m_Size; i++) { this->pAddress[i] = arr.pAddress[i]; } } // operator= 防止浅拷贝问题 MyArray& operator=(const MyArray& arr) { // 判断原来堆区是否有数据,如果有先释放 if (this->pAddress != NULL) { delete[]this->pAddress; this->pAddress = NULL; this->m_Capacity = 0; this->m_Size = 0; } // 深拷贝 this->m_Capacity = arr.m_Capacity; this->m_Size = arr.m_Size; this->pAddress=new T[arr.m_Capacity] for (int i = 0; i < this->m_Size; i++) { this->pAddress[i] = arr.pAddress[i]; } return *this; } private: T* pAddress;// 指针指向堆区开辟的真实数组 int m_Capacity;// 数组容量 int m_Size;//数组大小 };上述代码有什么问题?

在上述代码中,`MyArray` 类中的构造函数被命名为 `MyAddress`,而不是 `MyArray`,这是一个拼写错误。 此外,在析构函数中,将 `this->MyAddress` 设置为 `NULL` 是错误的,应该是将 `this->pAddress` 设置为 `NULL` 来释放堆内存。 在赋值操作符重载函数中,没有为 `pAddress` 分配新的内存空间之前就进行了赋值操作,这会导致潜在的内存泄漏。应该先为 `pAddress` 分配新的内存空间,然后再进行赋值操作。 修正后的代码如下: ```cpp #pragma once #include<iostream> using namespace std; template<class T> class MyArray { public: // 有参构造 MyArray(int capacity) { this->m_Capacity = capacity; this->m_Size = 0; this->pAddress = new T[this->m_Capacity]; } // 析构函数 ~MyArray() { if (this->pAddress != NULL) { delete[] this->pAddress; this->pAddress = NULL; } } // 拷贝构造 MyArray(const MyArray& arr) { this->m_Capacity = arr.m_Capacity; this->m_Size = arr.m_Size; this->pAddress = new T[arr.m_Capacity]; // 将arr中的数据都拷贝过来 for (int i = 0; i < this->m_Size; i++) { this->pAddress[i] = arr.pAddress[i]; } } // operator= 防止浅拷贝问题 MyArray& operator=(const MyArray& arr) { // 判断原来堆区是否有数据,如果有先释放 if (this->pAddress != NULL) { delete[] this->pAddress; this->pAddress = NULL; this->m_Capacity = 0; this->m_Size = 0; } // 深拷贝 this->m_Capacity = arr.m_Capacity; this->m_Size = arr.m_Size; this->pAddress = new T[arr.m_Capacity]; for (int i = 0; i < this->m_Size; i++) { this->pAddress[i] = arr.pAddress[i]; } return *this; } private: T* pAddress; // 指针指向堆区开辟的真实数组 int m_Capacity; // 数组容量 int m_Size; // 数组大小 }; ``` 修正后的代码中,`MyArray` 类的构造函数被改回为 `MyArray`,修复了拼写错误。同时,在析构函数和赋值操作符重载函数中,修正了错误的内存释放和深拷贝实现。

相关推荐

降低这段代码的重复率:#交叉 def crossSol(model): sol_list=copy.deepcopy(model.sol_list) model.sol_list=[] while True: f1_index = random.randint(0, len(sol_list) - 1) f2_index = random.randint(0, len(sol_list) - 1) if f1_index!=f2_index: f1 = copy.deepcopy(sol_list[f1_index]) f2 = copy.deepcopy(sol_list[f2_index]) if random.random() <= model.pc: cro1_index=int(random.randint(0,len(model.demand_id_list)-1)) cro2_index=int(random.randint(cro1_index,len(model.demand_id_list)-1)) new_c1_f = [] new_c1_m=f1.node_id_list[cro1_index:cro2_index+1] new_c1_b = [] new_c2_f = [] new_c2_m=f2.node_id_list[cro1_index:cro2_index+1] new_c2_b = [] for index in range(len(model.demand_id_list)): if len(new_c1_f)<cro1_index: if f2.node_id_list[index] not in new_c1_m: new_c1_f.append(f2.node_id_list[index]) else: if f2.node_id_list[index] not in new_c1_m: new_c1_b.append(f2.node_id_list[index]) for index in range(len(model.demand_id_list)): if len(new_c2_f)<cro1_index: if f1.node_id_list[index] not in new_c2_m: new_c2_f.append(f1.node_id_list[index]) else: if f1.node_id_list[index] not in new_c2_m: new_c2_b.append(f1.node_id_list[index]) new_c1=copy.deepcopy(new_c1_f) new_c1.extend(new_c1_m) new_c1.extend(new_c1_b) f1.nodes_seq=new_c1 new_c2=copy.deepcopy(new_c2_f) new_c2.extend(new_c2_m) new_c2.extend(new_c2_b) f2.nodes_seq=new_c2 model.sol_list.append(copy.deepcopy(f1)) model.sol_list.append(copy.deepcopy(f2)) else: model.sol_list.append(copy.deepcopy(f1)) model.sol_list.append(copy.deepcopy(f2)) if len(model.sol_list)>model.popsize: break

最新推荐

recommend-type

浅谈int8_t int64_t size_t ssize_t的相关问题(详解)

下面小编就为大家带来一篇浅谈int8_t int64_t size_t ssize_t的相关问题(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

毕业设计:基于SSM的mysql-羽毛球交流平台系统(源码 + 数据库 + 说明文档)

毕业设计:基于SSM的mysql_羽毛球交流平台系统(源码 + 数据库 + 说明文档) 2 关键技术介绍 6 2.1 JSP技术概述 6 2.2 MYSQL简介 6 2.3 B/S结构 7 2.4 JAVA语言 8 2.5 MyEclipse简介 9 2.6 性能分析 9 2.7 SSM概述 10 3 需求分析与设计 11 3.1 系统需求分析 11 3.2 运行可行性 11 3.3 系统可行性分析 11 3.3.1 技术可行性 11 3.3.2 经济可行性 12 3.3.3 操作可行性 12 3.4 系统功能分析 12 3.5 系统功能结构图 13 3.6 系统流程分析 14 4 数据库设计 17 4.1数据库逻辑结构设计 17 4.2数据库物理结构设计 20 5 系统的详细设计与实现 25 5.1首页页面 25 5.2站内新闻页面 25 5.3场地列表页面 26 5.4场地详情页面 26 5.5在线留言页面 27 5.6修改密码页面 27 5.7注册用户管理信息页面 28 5.8场地信息管理页面 28 5.9场地预约管理页面 29 5.10评论信息管理页面 29 5.11添加友情链
recommend-type

node-v10.15.1-win-x64.zip

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种