scaler = MinMaxScaler() train_data_scaled = scaler.fit_transform(train_data) X=[] y=[] for i in range(len(train_data_scaled)-max(n_predictions)): X.append(train_data_scaled[i:i+1,1:5]) y.append(train_data_scaled[i:i+1,0:1])基于以上代码帮我编写一个可以多步预测的LSTM模型
时间: 2023-11-29 12:06:17 浏览: 126
基于贝叶斯优化算法的LSTM模型时间序列多步预测Matlab程序代码
5星 · 资源好评率100%
好的,以下是一个基于以上代码的多步预测的LSTM模型:
```python
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# 将数据进行归一化
scaler = MinMaxScaler()
train_data_scaled = scaler.fit_transform(train_data)
# 定义函数,用于将数据转换为LSTM所需的格式
def create_dataset(X, y, time_steps=1):
Xs, ys = [], []
for i in range(len(X) - time_steps):
Xs.append(X[i:(i + time_steps)])
ys.append(y[i + time_steps])
return np.array(Xs), np.array(ys)
# 定义超参数
n_predictions = 3
n_features = 4
n_units = 32
n_epochs = 100
batch_size = 32
# 将数据转换为LSTM所需的格式
X, y = create_dataset(train_data_scaled[:, [0, 1, 2, 3]], train_data_scaled[:, [4]], n_predictions)
# 构建LSTM模型
model = Sequential()
model.add(LSTM(n_units, activation='relu', input_shape=(n_predictions, n_features)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# 训练模型
model.fit(X, y, epochs=n_epochs, batch_size=batch_size, verbose=1)
# 进行多步预测
predictions = []
current_batch = train_data_scaled[-n_predictions:, 1:5].reshape(1, n_predictions, n_features)
for i in range(n_predictions):
current_pred = model.predict(current_batch)[0]
predictions.append(current_pred)
current_batch = np.append(current_batch[:, 1:, :], [[current_pred]], axis=1)
# 将预测结果进行逆归一化
predictions = scaler.inverse_transform(predictions)
```
该模型使用了一个LSTM层和一个全连接层,其中LSTM层的输出被连接到Dense层进行最终预测。训练过程中使用均方误差作为损失函数,Adam优化器进行参数更新。在进行多步预测时,模型首先使用最后n_predictions个数据点进行初始化,然后进行n_predictions次预测,每次预测使用上一次的预测结果作为输入。最后,将预测结果进行逆归一化,得到最终的预测结果。
阅读全文