基于自适应分区演化水平集的肿瘤分割算法,你能告诉我代码流程吗
时间: 2023-03-20 08:02:13 浏览: 109
基于水平集的分割代码
5星 · 资源好评率100%
基于自适应分区演化水平集的肿瘤分割算法涉及多个步骤,以下是一个可能的代码流程:
1. 导入所需的Python库和模块:
```python
import numpy as np
import cv2
from scipy.ndimage import distance_transform_edt
```
2. 定义一个函数来加载并预处理肿瘤图像:
```python
def load_image(image_path):
img = cv2.imread(image_path, 0)
img = cv2.medianBlur(img, 5)
img = cv2.equalizeHist(img)
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX)
return img
```
3. 定义一个函数来初始化演化水平集变量,并计算图像的梯度值:
```python
def init_level_set(img_shape, radius):
level_set = np.zeros(img_shape)
center = (img_shape[0] // 2, img_shape[1] // 2)
y, x = np.ogrid[:img_shape[0], :img_shape[1]]
dist_from_center = np.sqrt((x - center[0])**2 + (y - center[1])**2)
level_set[dist_from_center <= radius] = 1
level_set[dist_from_center > radius] = -1
return level_set
def get_gradient(img):
grad_x = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=3)
grad_y = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=3)
gradient = np.sqrt(grad_x**2 + grad_y**2)
return gradient
```
4. 定义一个函数来计算自适应分区:
```python
def get_partition(level_set, num_partitions):
num_pixels = level_set.size
pixels_per_partition = num_pixels // num_partitions
sorted_levels = np.sort(level_set.flatten())
partitions = []
start_index = 0
for i in range(num_partitions - 1):
end_index = start_index
while end_index < num_pixels and end_index - start_index < pixels_per_partition:
end_index += 1
threshold = sorted_levels[end_index]
partition = np.zeros(level_set.shape)
partition[level_set >= threshold] = 1
partitions.append(partition)
start_index = end_index
partition = np.zeros(level_set.shape)
partition[level_set >= sorted_levels[start_index]] = 1
partitions.append(partition)
return partitions
```
5. 定义一个函数来计算演化速度:
```python
def get_speed(img_grad, beta, c_0, c_1, level_set):
inside = level_set > 0
outside = level_set < 0
c = np.zeros(img_grad.shape)
c[inside] = c_0
c[outside] = c_1
speed = c * img_grad
dirac = 1 / (2 * beta)
dirac_level_set = np.zeros(level_set.shape)
dirac_level_set[level_set >= 0] = 1
speed = dirac * dirac_level_set * speed
return speed
```
6. 定义一个函数来更新演化水平集:
```python
def
阅读全文