本次实验的任务为采用模板技术设计动态数组类 DynamicArray,要求系统设计具有一定弹性和可扩展性,使得后续维护和扩展功能更容易,增加或修改系统功能变得更简单。基本要求和功能如下: (1)数组元素可动态实例化为int、double、string、Point等。 (2)类模板成员包括:数组长度、元素个数、数据指针。 (3)通过构造函数创建数组,默认包含10个元素,通过析构函数释放数组数据。 (4)追加数组元素:void AddItems(T aData[], int aLen); 在数组末尾添加aLen个元素,注意如果数组长度不够,需要动态扩展。 (5)删除数据元素:bool RemoveAt(int index); 返回是否删除成功。 (6)插入数组元素 void InsertItem( int index, T aData); 在数组的第index的位置插入元素aData,注意如果数组长度不够,需要动态扩展。 (7)数组元素排序,void mySort();根据以上要求写出一个程序,除此之外还需要写出对应的主函数,写出main函数,要求main函数中包括菜单,菜单内容包括数组元素可动态实例化为int、double、string、Point,和各个功能,功能包括输入数据,追加数据,删除数据,插入数据,数组元素排序。 对应各个功能

时间: 2024-02-06 16:09:21 浏览: 95
RAR

介绍一个模板动态数组

star4星 · 用户满意度95%
的菜单选项为: 1. 选择数据类型 2. 输入数据 3. 追加数据 4. 删除数据 5. 插入数据 6. 排序数据 7. 退出程序 以下是一个可能的实现方式,供参考: ```c++ #include <iostream> #include <string> #include <algorithm> // for std::sort using namespace std; template <typename T> class DynamicArray { private: T* mData; // 指向数组的指针 int mSize; // 数组长度 int mCount; // 元素个数 public: // 构造函数 DynamicArray(int size = 10) : mSize(size), mCount(0) { mData = new T[size]; } // 析构函数 ~DynamicArray() { delete[] mData; } // 添加元素 void AddItems(T aData[], int aLen) { if (mCount + aLen > mSize) { // 需要扩展数组 T* newData = new T[mSize * 2]; for (int i = 0; i < mCount; i++) { newData[i] = mData[i]; } delete[] mData; mData = newData; mSize *= 2; } for (int i = 0; i < aLen; i++) { mData[mCount++] = aData[i]; } } // 删除元素 bool RemoveAt(int index) { if (index < 0 || index >= mCount) { return false; } for (int i = index; i < mCount - 1; i++) { mData[i] = mData[i + 1]; } mCount--; return true; } // 插入元素 void InsertItem(int index, T aData) { if (index < 0 || index > mCount) { return; } if (mCount + 1 > mSize) { // 需要扩展数组 T* newData = new T[mSize * 2]; for (int i = 0; i < mCount; i++) { newData[i] = mData[i]; } delete[] mData; mData = newData; mSize *= 2; } for (int i = mCount; i > index; i--) { mData[i] = mData[i - 1]; } mData[index] = aData; mCount++; } // 排序元素 void mySort() { std::sort(mData, mData + mCount); } // 获取元素个数 int GetCount() const { return mCount; } // 获取元素 T& operator[](int index) { return mData[index]; } }; // Point 类 class Point { private: int mX; int mY; public: Point(int x = 0, int y = 0) : mX(x), mY(y) {} bool operator<(const Point& other) const { return mX < other.mX || (mX == other.mX && mY < other.mY); } friend ostream& operator<<(ostream& os, const Point& p) { os << "(" << p.mX << ", " << p.mY << ")"; return os; } }; // 输入数据 template <typename T> void InputData(DynamicArray<T>& arr) { int n; cout << "请输入元素个数:"; cin >> n; T* data = new T[n]; for (int i = 0; i < n; i++) { cout << "请输入第 " << i + 1 << " 个元素:"; cin >> data[i]; } arr.AddItems(data, n); delete[] data; cout << "输入成功!" << endl; } // 追加数据 template <typename T> void AppendData(DynamicArray<T>& arr) { int n; cout << "请输入要追加的元素个数:"; cin >> n; T* data = new T[n]; for (int i = 0; i < n; i++) { cout << "请输入要追加的第 " << i + 1 << " 个元素:"; cin >> data[i]; } arr.AddItems(data, n); delete[] data; cout << "追加成功!" << endl; } // 删除数据 template <typename T> void RemoveData(DynamicArray<T>& arr) { int index; cout << "请输入要删除的元素下标:"; cin >> index; if (arr.RemoveAt(index)) { cout << "删除成功!" << endl; } else { cout << "删除失败!下标越界。" << endl; } } // 插入数据 template <typename T> void InsertData(DynamicArray<T>& arr) { int index; T data; cout << "请输入要插入的元素下标:"; cin >> index; cout << "请输入要插入的元素:"; cin >> data; arr.InsertItem(index, data); cout << "插入成功!" << endl; } // 排序数据 template <typename T> void SortData(DynamicArray<T>& arr) { arr.mySort(); cout << "排序成功!" << endl; } // 主函数 int main() { int choice; cout << "请选择数据类型:" << endl; cout << "1. int" << endl; cout << "2. double" << endl; cout << "3. string" << endl; cout << "4. Point" << endl; DynamicArray<int> intArr; DynamicArray<double> doubleArr; DynamicArray<string> stringArr; DynamicArray<Point> pointArr; do { cout << "请选择功能:" << endl; cout << "1. 输入数据" << endl; cout << "2. 追加数据" << endl; cout << "3. 删除数据" << endl; cout << "4. 插入数据" << endl; cout << "5. 排序数据" << endl; cout << "6. 退出程序" << endl; cin >> choice; switch (choice) { case 1: cout << "输入数据类型为 int,请输入数据:" << endl; InputData(intArr); break; case 2: cout << "追加数据类型为 int,请输入数据:" << endl; AppendData(intArr); break; case 3: cout << "删除数据类型为 int,请输入数据:" << endl; RemoveData(intArr); break; case 4: cout << "插入数据类型为 int,请输入数据:" << endl; InsertData(intArr); break; case 5: cout << "排序数据类型为 int,请输入数据:" << endl; SortData(intArr); break; case 6: cout << "程序已退出。" << endl; break; default: cout << "无效选项,请重新输入。" << endl; } } while (choice != 6); return 0; } ```
阅读全文

相关推荐

最新推荐

recommend-type

采用FPGA语音识别系统电路设计

嵌入式平台的使用,尤其是基于Nios II的SOPC技术,使得整个系统能够集成在单一芯片上,降低了系统体积,节省了能源,并提高了系统的可维护性和灵活性。Nios II是Altera公司开发的一种软核CPU,它可以在FPGA内部运行...
recommend-type

基于ADF4351和FPGA的合成频率源的设计

【基于ADF4351和FPGA的合成频率源的设计】是现代电子技术中的一个重要应用,它结合了高性能的数字锁相环(Digital Phase-Locked Loop, DPLL)芯片ADF4351和现场可编程门阵列(Field-Programmable Gate Array, FPGA)...
recommend-type

2015年下半年软件设计师真题和答案

软件设计师考试是中国计算机技术与软件专业技术资格(水平)考试的一种,旨在考察应试者在软件设计与开发方面的理论知识和技术能力。2015年下半年的考试真题及答案,对于备考者来说具有极高的参考价值,可以帮助考生...
recommend-type

全局时钟资源和时钟多路复用器(BUFGMUX)

它们不仅确保了时钟信号的准确传播,还提供了灵活的时钟管理和控制功能,为FPGA设计者提供了强大的工具来构建高效且可靠的数字系统。通过巧妙的布线和资源复用,这些技术在满足时钟分布需求的同时,最大限度地提高了...
recommend-type

基于FPGA的高清视频采集系统设计

高清视频采集系统设计是现代电子技术中的一个重要领域,随着视频技术的发展,对视频信号的处理和显示要求越来越高。本文介绍的是一种基于FPGA(Field-Programmable Gate Array,现场可编程门阵列)的高清视频采集...
recommend-type

IEEE 14总线系统Simulink模型开发指南与案例研究

资源摘要信息:"IEEE 14 总线系统 Simulink 模型是基于 IEEE 指南而开发的,可以用于多种电力系统分析研究,比如短路分析、潮流研究以及互连电网问题等。模型具体使用了 MATLAB 这一数学计算与仿真软件进行开发,模型文件为 Fourteen_bus.mdl.zip 和 Fourteen_bus.zip,其中 .mdl 文件是 MATLAB 的仿真模型文件,而 .zip 文件则是为了便于传输和分发而进行的压缩文件格式。" IEEE 14总线系统是电力工程领域中用于仿真实验和研究的基础测试系统,它是根据IEEE(电气和电子工程师协会)的指南设计的,目的是为了提供一个标准化的测试平台,以便研究人员和工程师可以比较不同的电力系统分析方法和优化技术。IEEE 14总线系统通常包括14个节点(总线),这些节点通过一系列的传输线路和变压器相互连接,以此来模拟实际电网中各个电网元素之间的电气关系。 Simulink是MATLAB的一个附加产品,它提供了一个可视化的环境用于模拟、多域仿真和基于模型的设计。Simulink可以用来模拟各种动态系统,包括线性、非线性、连续时间、离散时间以及混合信号系统,这使得它非常适合电力系统建模和仿真。通过使用Simulink,工程师可以构建复杂的仿真模型,其中就包括了IEEE 14总线系统。 在电力系统分析中,短路分析用于确定在特定故障条件下电力系统的响应。了解短路电流的大小和分布对于保护设备的选择和设置至关重要。潮流研究则关注于电力系统的稳态操作,通过潮流计算可以了解在正常运行条件下各个节点的电压幅值、相位和系统中功率流的分布情况。 在进行互连电网问题的研究时,IEEE 14总线系统也可以作为一个测试案例,研究人员可以通过它来分析电网中的稳定性、可靠性以及安全性问题。此外,它也可以用于研究分布式发电、负载管理和系统规划等问题。 将IEEE 14总线系统的模型文件打包为.zip格式,是一种常见的做法,以减小文件大小,便于存储和传输。在解压.zip文件之后,用户就可以获得包含所有必要组件的完整模型文件,进而可以在MATLAB的环境中加载和运行该模型,进行上述提到的多种电力系统分析。 总的来说,IEEE 14总线系统 Simulink模型提供了一个有力的工具,使得电力系统的工程师和研究人员可以有效地进行各种电力系统分析与研究,并且Simulink模型文件的可复用性和可视化界面大大提高了工作的效率和准确性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【数据安全黄金法则】:R语言中party包的数据处理与隐私保护

![【数据安全黄金法则】:R语言中party包的数据处理与隐私保护](https://media.geeksforgeeks.org/wp-content/uploads/20220603131009/Group42.jpg) # 1. 数据安全黄金法则与R语言概述 在当今数字化时代,数据安全已成为企业、政府机构以及个人用户最为关注的问题之一。数据安全黄金法则,即最小权限原则、加密保护和定期评估,是构建数据保护体系的基石。通过这一章节,我们将介绍R语言——一个在统计分析和数据科学领域广泛应用的编程语言,以及它在实现数据安全策略中所能发挥的独特作用。 ## 1.1 R语言简介 R语言是一种
recommend-type

Takagi-Sugeno模糊控制方法的原理是什么?如何设计一个基于此方法的零阶或一阶模糊控制系统?

Takagi-Sugeno模糊控制方法是一种特殊的模糊推理系统,它通过一组基于规则的模糊模型来逼近系统的动态行为。与传统的模糊控制系统相比,该方法的核心在于将去模糊化过程集成到模糊推理中,能够直接提供系统的精确输出,特别适合于复杂系统的建模和控制。 参考资源链接:[Takagi-Sugeno模糊控制原理与应用详解](https://wenku.csdn.net/doc/2o97444da0?spm=1055.2569.3001.10343) 零阶Takagi-Sugeno系统通常包含基于规则的决策,它不包含系统的动态信息,适用于那些系统行为可以通过一组静态的、非线性映射来描述的场合。而一阶
recommend-type

STLinkV2.J16.S4固件更新与应用指南

资源摘要信息:"STLinkV2.J16.S4固件.zip包含了用于STLinkV2系列调试器的JTAG/SWD接口固件,具体版本为J16.S4。固件文件的格式为二进制文件(.bin),适用于STMicroelectronics(意法半导体)的特定型号的调试器,用于固件升级或更新。" STLinkV2.J16.S4固件是指针对STLinkV2系列调试器的固件版本J16.S4。STLinkV2是一种常用于编程和调试STM32和STM8微控制器的调试器,由意法半导体(STMicroelectronics)生产。固件是指嵌入在设备硬件中的软件,负责执行设备的低级控制和管理任务。 固件版本J16.S4中的"J16"可能表示该固件的修订版本号,"S4"可能表示次级版本或是特定于某个系列的固件。固件版本号可以用来区分不同时间点发布的更新和功能改进,开发者和用户可以根据需要选择合适的版本进行更新。 通常情况下,固件升级可以带来以下好处: 1. 增加对新芯片的支持:随着新芯片的推出,固件升级可以使得调试器能够支持更多新型号的微控制器。 2. 提升性能:修复已知的性能问题,提高设备运行的稳定性和效率。 3. 增加新功能:可能包括对调试协议的增强,或是新工具的支持。 4. 修正错误:对已知错误进行修正,提升调试器的兼容性和可靠性。 使用STLinkV2.J16.S4固件之前,用户需要确保固件与当前的硬件型号兼容。更新固件的步骤大致如下: 1. 下载固件文件STLinkV2.J16.S4.bin。 2. 打开STLink的软件更新工具(可能是ST-Link Utility),该工具由STMicroelectronics提供,用于管理固件更新过程。 3. 通过软件将下载的固件文件导入到调试器中。 4. 按照提示完成固件更新过程。 在进行固件更新之前,强烈建议用户仔细阅读相关的更新指南和操作手册,以避免因操作不当导致调试器损坏。如果用户不确定如何操作,应该联系设备供应商或专业技术人员进行咨询。 固件更新完成后,用户应该检查调试器是否能够正常工作,并通过简单的测试项目验证固件的功能是否正常。如果存在任何问题,应立即停止使用并联系技术支持。 固件文件通常位于STMicroelectronics官方网站或专门的软件支持平台上,用户可以在这里下载最新的固件文件,以及获得技术支持和更新日志。STMicroelectronics网站上还会提供固件更新工具,它是更新固件的必备工具。 由于固件涉及到硬件设备的底层操作,错误的固件升级可能会导致设备变砖(无法使用)。因此,在进行固件更新之前,用户应确保了解固件更新的风险,备份好重要数据,并在必要时寻求专业帮助。