ShuffleNet V2网络结构图
时间: 2023-12-04 09:32:01 浏览: 146
以下是ShuffleNet V2的网络结构图,可以看到它主要由ShuffleNet unit组成,其中包含了channel shuffle和pointwise group convolution等操作。
![ShuffleNet V2网络结构图](https://img-blog.csdn.net/20180525150953668?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2p1bmllXzM2Nzg5MTQy/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/85#pic_center)
相关问题
使用pytorch实现用shufflenet v2进行图像分类,并给出模型代码,训练代码,并描述整个过程
ShuffleNet V2是一种轻量级的深度神经网络,适用于移动设备和嵌入式设备上的图像分类任务。它采用了channel shuffle的思想,在保证模型精度的同时,大大减少了模型的计算量和参数量。
下面是使用PyTorch实现ShuffleNet V2进行图像分类的模型代码和训练代码:
```python
import torch
import torch.nn as nn
class ShuffleBlock(nn.Module):
def __init__(self, groups=2):
super(ShuffleBlock, self).__init__()
self.groups = groups
def forward(self, x):
batch_size, channels, height, width = x.size()
channels_per_group = channels // self.groups
x = x.view(batch_size, self.groups, channels_per_group, height, width)
x = x.transpose(1, 2).contiguous()
x = x.view(batch_size, -1, height, width)
return x
class ShuffleNetV2(nn.Module):
def __init__(self, num_classes=1000):
super(ShuffleNetV2, self).__init__()
self.conv1 = nn.Conv2d(3, 24, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(24)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.stage2 = self._make_stage(24, 116, 3)
self.stage3 = self._make_stage(116, 232, 4)
self.stage4 = self._make_stage(232, 464, 6)
self.conv5 = nn.Conv2d(464, 1024, kernel_size=1, stride=1, padding=0, bias=False)
self.bn5 = nn.BatchNorm2d(1024)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(1024, num_classes)
def _make_stage(self, in_channels, out_channels, repeat):
layers = []
layers.append(nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
layers.append(nn.ReLU(inplace=True))
for i in range(repeat):
layers.append(ShuffleBlock())
layers.append(nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False))
layers.append(nn.BatchNorm2d(out_channels))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = nn.ReLU(inplace=True)(x)
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.conv5(x)
x = self.bn5(x)
x = nn.ReLU(inplace=True)(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
上面的代码实现了ShuffleNet V2的主体结构。通过_make_stage函数可以定义每个stage的结构,其中包含多个ShuffleBlock以及卷积、BN和ReLU激活函数等操作。在forward函数中,将主体结构按照顺序连接起来,最后通过全局平均池化和全连接层输出分类结果。
下面是使用PyTorch进行模型训练的代码:
```python
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
# 数据预处理
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载训练集和测试集
trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
# 定义模型
net = ShuffleNetV2(num_classes=10)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0001)
# 训练模型
for epoch in range(200):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
上面的代码中,使用了CIFAR10数据集进行模型训练和测试。在训练过程中,定义了交叉熵损失函数和随机梯度下降优化器,并使用了数据增强技术。在每个epoch结束后,通过测试集计算模型的准确率。
用pytorch实现基于shufflenet v2的图像识别的过程是什么,原理是什么,如何实现
ShuffleNet V2是一种轻量级的神经网络模型,主要用于图像分类任务。该模型采用了分组卷积和通道重排等技术,能够在保持较高准确率的同时,大幅减小模型参数量和计算量。
下面是基于PyTorch实现基于ShuffleNet V2的图像识别的步骤:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
```
2. 定义模型结构:
```python
class ShuffleNetV2(nn.Module):
def __init__(self, input_size=224, num_classes=1000):
super(ShuffleNetV2, self).__init__()
# 定义模型各层的参数
self.input_size = input_size
self.num_classes = num_classes
self.stage_repeats = [4, 8, 4]
self.stage_out_channels = [-1, 24, 116, 232, 464, 1024]
self.conv1_channel = 24
self.conv3_channel = 116
# 定义模型各层
self.conv1 = nn.Conv2d(3, self.conv1_channel, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(self.conv1_channel)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.stage2 = self._make_stage(2)
self.stage3 = self._make_stage(3)
self.stage4 = self._make_stage(4)
self.conv5 = nn.Conv2d(self.stage_out_channels[-2], self.stage_out_channels[-1], kernel_size=1, stride=1, padding=0, bias=False)
self.bn5 = nn.BatchNorm2d(self.stage_out_channels[-1])
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)
self.fc = nn.Linear(self.stage_out_channels[-1], self.num_classes)
def _make_stage(self, stage):
modules = []
# 该阶段的输入和输出通道数
stage_channels = self.stage_out_channels[stage]
# 需要分组的数量
num_groups = 2 if stage == 2 else 4
# 第一个块的通道数需要在conv3后增加
first_block_channels = self.conv3_channel if stage == 2 else stage_channels // 2
# 第一个块,包含1个3x3分组卷积和1个1x1分组卷积
modules.append(ShuffleBlock(self.stage_out_channels[stage-1], first_block_channels, groups=num_groups, stride=2))
# 后续块,包含1个1x1分组卷积、1个3x3分组卷积和1个1x1分组卷积
for i in range(self.stage_repeats[stage-2]):
modules.append(ShuffleBlock(first_block_channels, stage_channels, groups=num_groups, stride=1))
return nn.Sequential(*modules)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = nn.functional.relu(x, inplace=True)
x = self.maxpool(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.conv5(x)
x = self.bn5(x)
x = nn.functional.relu(x, inplace=True)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
```
3. 定义ShuffleBlock模块:
```python
class ShuffleBlock(nn.Module):
def __init__(self, in_channels, out_channels, groups, stride):
super(ShuffleBlock, self).__init__()
mid_channels = out_channels // 2
if stride == 1:
self.branch1 = nn.Sequential()
else:
self.branch1 = nn.Sequential(
nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False),
nn.BatchNorm2d(in_channels),
nn.Conv2d(in_channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True)
)
self.branch2 = nn.Sequential(
nn.Conv2d(in_channels if stride > 1 else mid_channels, mid_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, mid_channels, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False),
nn.BatchNorm2d(mid_channels),
nn.Conv2d(mid_channels, out_channels - mid_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channels - mid_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat([x1, x2], 1)
out = channel_shuffle(out, 2)
return out
```
4. 定义ShuffleNet V2中的通道重排操作:
```python
def channel_shuffle(x, groups):
batch_size, channels, height, width = x.data.size()
channels_per_group = channels // groups
# 将x按通道数分组
x = x.view(batch_size, groups, channels_per_group, height, width)
# 将x的通道数重排
x = torch.transpose(x, 1, 2).contiguous()
# 将x合并回原来的形状
x = x.view(batch_size, -1, height, width)
return x
```
5. 加载数据集和预处理:
```python
# 定义图像预处理
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载训练集和测试集
train_dataset = datasets.ImageFolder("path/to/train/folder", transform=transform)
test_dataset = datasets.ImageFolder("path/to/test/folder", transform=transform)
# 定义数据加载器
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=4)
```
6. 定义损失函数和优化器:
```python
net = ShuffleNetV2()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=0.0001)
```
7. 训练模型:
```python
for epoch in range(30):
net.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 在测试集上测试模型
net.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
output = net(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
print('Epoch: %d, Test Accuracy: %.2f%%' % (epoch+1, 100.*correct/total))
```
以上就是基于PyTorch实现基于ShuffleNet V2的图像识别的完整步骤。
阅读全文