解释这段代码import jittor as jt from jittor import nn jt.flags.use_cuda = 1 import os import tqdm import numpy as np import imageio import argparse import jrender as jr from jrender import neg_iou_loss, LaplacianLoss, FlattenLoss current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') class Model(nn.Module): def __init__(self, template_path): super(Model, self).__init__() # set template mesh self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() # optimize for displacement map and center self.displace = jt.zeros(self.template_mesh.vertices.shape) self.center = jt.zeros((1, 1, 3)) # define Laplacian and flatten geometry constraints self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) self.flatten_loss = FlattenLoss(self.faces[0]) def execute(self, batch_size): base = jt.log(self.vertices.abs() / (1 - self.vertices.abs())) centroid = jt.tanh(self.center) vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices) vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1) vertices = vertices + centroid # apply Laplacian and flatten geometry constraints laplacian_loss = self.laplacian_loss(vertices).mean() flatten_loss = self.flatten_loss(vertices).mean() return jr.Mesh(vertices.repeat(batch_size, 1, 1), self.faces.repeat(batch_size, 1, 1), dr_type='n3mr'), laplacian_loss, flatten_loss

时间: 2024-04-27 20:20:16 浏览: 11
这段代码使用了 Jittor 深度学习框架,导入了 Jittor 的 nn 模块。然后将 Jittor 框架的 GPU 标志设置为使用 CUDA。接下来导入了一些 Python 标准库和 JRender 库。在代码中定义了一个名为 Model 的类,它继承自 nn.Module。在类的构造函数中,使用 JRender 库从给定的模板路径加载了一个网格,并将其作为模型的一部分进行了设置。它还定义了一些优化变量和几何约束。在类的 execute() 方法中,执行了一些数学计算,包括对模板网格进行变换并应用几何约束。最后,返回一个经过变换的网格和两个损失值。
相关问题

import jittor as jt import jrender as jr jt.flags.use_cuda = 1 # 开启GPU加速 import os import tqdm import numpy as np import imageio import argparse # 获取当前文件所在目录路径和数据目录路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): # 创建命令行参数解析器 parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()在每行代码后添加注释

# 引入所需的库 import jittor as jt import jrender as jr jt.flags.use_cuda = 1 # 开启GPU加速 import os import tqdm import numpy as np import imageio import argparse # 获取当前文件所在目录路径和数据目录路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): # 创建命令行参数解析器 parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) # 输入文件路径 parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) # 输出文件路径 args = parser.parse_args() # other settings camera_distance = 2.732 # 相机距离 elevation = 30 # 抬高角度 azimuth = 0 # 方位角度 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # 从.obj文件载入模型 # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') # 创建渲染器 os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) # 视角变换循环 writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') # 创建gif文件 imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() # 重置模型状态 loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) # 设置相机位置和角度 rgb = renderer.render_mesh(mesh, mode='rgb') # 渲染模型 image = rgb.numpy()[0].transpose((1, 2, 0)) # 转置图片通道 writer.append_data((255*image).astype(np.uint8)) # 写入gif文件 writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) # 模糊循环 renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) # 设置相机位置和角度 writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') # 创建gif文件 for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() # 重置模型状态 renderer.set_gamma(10**gamma_pow) # 设置gamma值 renderer.set_sigma(10**(gamma_pow - 1)) # 设置sigma值 loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') # 渲染模型 image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) # 写入gif文件 writer.close() # save to textured obj mesh.reset_() # 重置模型状态 mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) # 保存模型 if __name__ == '__main__': main()

解释这段代码import jittor as jt import jrender as jr jt.flags.use_cuda = 1 import os import tqdm import numpy as np import imageio import argparse current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--filename-input', type=str, default=os.path.join(data_dir, 'obj/spot/spot_triangulated.obj')) parser.add_argument('-o', '--output-dir', type=str, default=os.path.join(data_dir, 'results/output_render')) args = parser.parse_args() # other settings camera_distance = 2.732 elevation = 30 azimuth = 0 # load from Wavefront .obj file mesh = jr.Mesh.from_obj(args.filename_input, load_texture=True, texture_res=5, texture_type='surface', dr_type='softras') # create renderer with SoftRas renderer = jr.Renderer(dr_type='softras') os.makedirs(args.output_dir, exist_ok=True) # draw object from different view loop = tqdm.tqdm(list(range(0, 360, 4))) writer = imageio.get_writer(os.path.join(args.output_dir, 'rotation.gif'), mode='I') imgs = [] from PIL import Image for num, azimuth in enumerate(loop): # rest mesh to initial state mesh.reset_() loop.set_description('Drawing rotation') renderer.transform.set_eyes_from_angles(camera_distance, elevation, azimuth) rgb = renderer.render_mesh(mesh, mode='rgb') image = rgb.numpy()[0].transpose((1, 2, 0)) writer.append_data((255*image).astype(np.uint8)) writer.close() # draw object from different sigma and gamma loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2))) renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45) writer = imageio.get_writer(os.path.join(args.output_dir, 'bluring.gif'), mode='I') for num, gamma_pow in enumerate(loop): # rest mesh to initial state mesh.reset_() renderer.set_gamma(10**gamma_pow) renderer.set_sigma(10**(gamma_pow - 1)) loop.set_description('Drawing blurring') images = renderer.render_mesh(mesh, mode='rgb') image = images.numpy()[0].transpose((1, 2, 0)) # [image_size, image_size, RGB] writer.append_data((255*image).astype(np.uint8)) writer.close() # save to textured obj mesh.reset_() mesh.save_obj(os.path.join(args.output_dir, 'saved_spot.obj')) if __name__ == '__main__': main()

这段代码是一个用 Jittor 和 Jrender 库实现的 3D 渲染程序。程序的主要功能是从不同的视角渲染给定的 3D 模型,并保存渲染结果。具体过程如下: 1. 导入必要的库,包括 Jittor、Jrender、os、tqdm、numpy、imageio 和 argparse。 2. 定义了两个变量 `current_dir` 和 `data_dir`,用于指定当前目录和数据目录。 3. 定义了一个 `main()` 函数,用于实现程序的主要功能。 4. 在 `main()` 函数中,使用 `argparse` 库解析命令行参数,包括输入文件名和输出目录。同时,还定义了一些渲染参数,如相机距离、仰角和方位角。 5. 通过 Jrender 库中的 `Mesh.from_obj()` 函数从 Wavefront .obj 文件中加载 3D 模型,并创建一个基于 SoftRas 的渲染器。 6. 在渲染之前,先创建输出目录,并初始化一个 `tqdm` 进度条。 7. 使用 `tqdm` 进行循环渲染,每次渲染从不同的视角渲染并保存到一个 GIF 文件中。 8. 然后,使用 `tqdm` 进行另一个循环,每次改变渲染器的 sigma 和 gamma 参数,从而渲染出不同的模糊效果,并保存到另一个 GIF 文件中。 9. 最后,将渲染完的 3D 模型保存为一个带纹理的 Wavefront .obj 文件。 总体来说,这段代码实现了一个基于 SoftRas 的 3D 渲染程序,可以从不同的视角渲染给定的 3D 模型,并保存渲染结果到 GIF 文件和 Wavefront .obj 文件中。

相关推荐

最新推荐

recommend-type

华为OD机试D卷 - 用连续自然数之和来表达整数 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

输出这段Python代码输出所有3位整数中,个位是5且是3的倍数的整数

``` for i in range(100,1000): if i%10 == 5 and i%3 == 0: print(i) ``` 输出结果: ``` 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525 555 585 615 645 675 705 735 765 795 825 855 885 915 945 975 ```
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。