简化代码:def generate_time_series(start,end,t1,t2): current = start end_item = end time_delta = datetime.timedelta(days=t1,hours=t2) time_series = [current] while current < end_item: next1 = current + time_delta time_series.append(next1) current = next1 return time_series time_hour=generate_time_series(data1.loc[0]['FDT_TIME'],data1.loc[len(data1)-1]['FDT_TIME'],0,1) time_day=generate_time_series(data1.loc[0]['FDT_TIME'],data1.loc[len(data1)-1]['FDT_TIME'],1,0) def VALIDITY(timelist,thedata): datalist1=[] datalist2=[] thedata1=thedata.values for i in range(1,len(timelist)): TFlis=[] for j in range(len(thedata1)): if timelist[i-1]<=thedata1[j][2]<timelist[i]: TFlis.append(thedata1[j][6]) datalist1.append(TFlis) for i in datalist1: datalist2.append((i.count("T"))/len(i)) return datalist2 x1=[] for i in range(0,len(VALIDITY(time_hour, data1))): x1.append(i) x2=[] for i in range(0,len(VALIDITY(time_day, data1))): x2.append(i) plt.rcParams['font.sans-serif']=['SimHei'] plt.figure(figsize=(10,5)) plt.title('一周时间内的小时有效性时序图') plt.plot(x1,VALIDITY(time_hour, data1),color='k') plt.xlabel('时间') plt.ylabel('有效性') plt.xticks(np.arange(0,len(x1),24),['2010-04-18','2010-04-19','2010-04-20','2010-04-21','2010-04-22','2010-04-23','2010-04-24']) plt.show() plt.figure(figsize=(10,5)) plt.title('一周时间内的日有效性时序图') plt.plot(x2,VALIDITY(time_day, data1),color='k') plt.xlabel('时间') plt.ylabel('有效性') plt.xticks(np.arange(0,len(x2)),['2010-04-18','2010-04-19','2010-04-20','2010-04-21','2010-04-22','2010-04-23','2010-04-24']) plt.show()

时间: 2023-06-09 16:06:44 浏览: 54
AI: 理解了,你的问题是如何简化以下代码: def generate_time_series(start,end,t1,t2): current = start end_item = end time_delta = datetime.timedelta(days=t1,hours=t2) time_series = [current] while current < end_item: next1 = current + time_delta time_series.append(next1) current = next1 return time_series time_hour = generate_time_series(data1.loc[0]['FDT_TIME'], data1.loc[len(data1)-1]['FDT_TIME'], 0, 1) time_day = generate_time_series(data1.loc[0]['FDT_TIME'], data1.loc[len(data1)-1]['FDT_TIME'], 1, 0) def VALIDITY(timelist, thedata): datalist1 = [] datalist2 = [] thedata1 = thedata.values for i in range(1, len(timelist)): TFlis = [] for j in range(len(thedata1)): if timelist[i-1] <= thedata1[j][2] < timelist[i]: TFlis.append(thedata1[j][6]) datalist1.append(TFlis) for i in datalist1: datalist2.append((i.count("T"))/len(i)) return datalist2 x1 = list(range(len(VALIDITY(time_hour, data1)))) x2 = list(range(len(VALIDITY(time_day, data1)))) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(10, 5)) plt.title('一周时间内的小时有效性时序图') plt.plot(x1, VALIDITY(time_hour, data1), color='k') plt.xlabel('时间') plt.ylabel('有效性') plt.xticks(np.arange(0, len(x1), 24), ['2010-04-18','2010-04-19','2010-04-20','2010-04-21','2010-04-22','2010-04-23','2010-04-24']) plt.show() plt.figure(figsize=(10, 5)) plt.title('一周时间内的日有效性时序图') plt.plot(x2, VALIDITY(time_day, data1), color='k') plt.xlabel('时间') plt.ylabel('有效性') plt.xticks(np.arange(0,len(x2)), ['2010-04-18','2010-04-19','2010-04-20','2010-04-21','2010-04-22','2010-04-23','2010-04-24']) plt.show() 我的回答是: def generate_time_series(start,end,days=0,hours=0): current = start end_item = end time_delta = datetime.timedelta(days=days,hours=hours) time_series = [current] while current < end_item: next1 = current + time_delta time_series.append(next1) current = next1 return time_series time_hour = generate_time_series(data1.loc[0]['FDT_TIME'], data1.loc[len(data1)-1]['FDT_TIME'], hours=1) time_day = generate_time_series(data1.loc[0]['FDT_TIME'], data1.loc[len(data1)-1]['FDT_TIME'], days=1) x1 = list(range(len(VALIDITY(time_hour, data1)))) x2 = list(range(len(VALIDITY(time_day, data1)))) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.figure(figsize=(10, 5)) plt.title('一周时间内的小时有效性时序图') plt.plot(x1, VALIDITY(time_hour, data1), color='k') plt.xlabel('时间') plt.ylabel('有效性') plt.xticks(np.arange(0, len(x1), 24), ['2010-04-18','2010-04-19','2010-04-20','2010-04-21','2010-04-22','2010-04-23','2010-04-24']) plt.show() plt.figure(figsize=(10, 5)) plt.title('一周时间内的日有效性时序图') plt.plot(x2, VALIDITY(time_day, data1), color='k') plt.xlabel('时间') plt.ylabel('有效性') plt.xticks(np.arange(0,len(x2)), ['2010-04-18','2010-04-19','2010-04-20','2010-04-21','2010-04-22','2010-04-23','2010-04-24']) plt.show()

相关推荐

用pandas函数代替下列代码:def generate_time_series(start,end,t1,t2): current = start end_item = end time_delta = datetime.timedelta(days=t1,hours=t2) time_series = [current] while current < end_item: next1 = current + time_delta time_series.append(next1) current = next1 return time_series time_hour=generate_time_series(data1.loc[0]['FDT_TIME'],data1.loc[len(data1)-1]['FDT_TIME'],0,1) time_day=generate_time_series(data1.loc[0]['FDT_TIME'],data1.loc[len(data1)-1]['FDT_TIME'],1,0) def VALIDITY(timelist,thedata): datalist1=[] datalist2=[] thedata1=thedata.values for i in range(1,len(timelist)): TFlis=[] for j in range(len(thedata1)): if timelist[i-1]<=thedata1[j][2]<timelist[i]: TFlis.append(thedata1[j][6]) datalist1.append(TFlis) for i in datalist1: datalist2.append((i.count("T"))/len(i)) return datalist2 x1=[] for i in range(0,len(VALIDITY(time_hour, data1))): x1.append(i) x2=[] for i in range(0,len(VALIDITY(time_day, data1))): x2.append(i) plt.rcParams['font.sans-serif']=['SimHei'] plt.figure(figsize=(10,5)) plt.title('一周时间内的小时有效性时序图') plt.plot(x1,VALIDITY(time_hour, data1),color='k') plt.xlabel('时间') plt.ylabel('有效性') plt.xticks(np.arange(0,len(x1),24),['2010-04-18','2010-04-19','2010-04-20','2010-04-21','2010-04-22','2010-04-23','2010-04-24']) plt.show() plt.figure(figsize=(10,5)) plt.title('一周时间内的日有效性时序图') plt.plot(x2,VALIDITY(time_day, data1),color='k') plt.xlabel('时间') plt.ylabel('有效性') plt.xticks(np.arange(0,len(x2)),['2010-04-18','2010-04-19','2010-04-20','2010-04-21','2010-04-22','2010-04-23','2010-04-24']) plt.show()

class Path(object): def __init__(self,path,distancecost,timecost): self.__path = path self.__distancecost = distancecost self.__timecost = timecost #路径上最后一个节点 def getLastNode(self): return self.__path[-1] #获取路径路径 @property def path(self): return self.__path #判断node是否为路径上最后一个节点 def isLastNode(self, node): return node == self.getLastNode() #增加加点和成本产生一个新的path对象 def addNode(self, node, dprice, tprice): return Path(self.__path+[node],self.__distancecost + dprice,self.__timecost + tprice) #输出当前路径 def printPath(self): for n in self.__path: if self.isLastNode(node=n): print(n) else: print(n, end="->") print(f"最短路径距离(self.__distancecost:.0f)m") print(f"红绿路灯个数(self.__timecost:.0f)个") #获取路径总成本的只读属性 @property def dCost(self): return self.__distancecost @property def tCost(self): return self.__timecost class DirectedGraph(object): def __init__(self, d): if isinstance(d, dict): self.__graph = d else: self.__graph = dict() print('Sth error') #通过递归生成所有可能的路径 def __generatePath(self, graph, path, end, results, distancecostIndex, timecostIndex): current = path.getLastNode() if current == end: results.append(path) else: for n in graph[current]: if n not in path.path: self.__generatePath(graph, path.addNode(n,self.__graph[path.getLastNode()][n][distancecostIndex][timecostIndex]), end, results, distancecostIndex, timecostIndex) #搜索start到end之间时间或空间最短的路径,并输出 def __searchPath(self, start, end, distancecostIndex, timecostIndex): results = [] self.__generatePath(self.__graph, Path([start],0,0), end, results,distancecostIndex,timecostIndex) results.sort(key=lambda p: p.distanceCost) results.sort(key=lambda p: p.timeCost) print('The {} shortest path from '.format("spatially" if distancecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") print('The {} shortest path from '.format("spatially" if timecostIndex==0 else "temporally"), start, ' to ', end, ' is:', end="") results[0].printPath() #调用__searchPath搜索start到end之间的空间最短的路径,并输出 def searchSpatialMinPath(self,start, end): self.__searchPath(start,end,0,0) #调用__searc 优化这个代码

最新推荐

recommend-type

DC工具中set_dont_touch和set_size_only的区别.doc

DC工具中set_dont_touch和set_size_only的区别
recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通