编写sas代码,数据是逻辑库LB中的T1,table分别是drug表示有无用药,usubjid表示编号,lborres表示参数,visit表示给药后的第几周,lbtbt表示空腹或者用餐后两小时。实现治疗4、8、12周后空腹血糖、餐后2小时血糖相对基线的变化,并对药物进行有效性分析。
时间: 2024-03-23 22:40:00 浏览: 143
好的,根据您的要求,以下是SAS代码实现治疗4、8、12周后空腹血糖、餐后2小时血糖相对基线的变化,并对药物进行有效性分析:
```
/* 创建逻辑库 */
libname LB 'path/to/LB';
/* 数据清洗 */
data T1_clean;
set LB.T1;
/* 如果lbtbt为空,则默认为“空腹” */
if missing(lbtbt) then lbtbt = '空腹';
/* 将visit转为数字类型 */
visit_num = input(substr(visit, 2), 2.);
run;
/* 空腹血糖变化 */
proc sql;
create table fasting_glucose_change as
select usubjid, drug, visit_num,
lborres - min(lborres) as fasting_glucose_change
from T1_clean
where lbtbt = '空腹'
group by usubjid, drug, visit_num;
quit;
/* 餐后2小时血糖变化 */
proc sql;
create table postprandial_glucose_change as
select usubjid, drug, visit_num,
lborres - min(lborres) as postprandial_glucose_change
from T1_clean
where lbtbt = '用餐后2小时'
group by usubjid, drug, visit_num;
quit;
/* 药物有效性分析 */
/* 计算每个时间点的平均变化 */
proc sql;
create table mean_change as
select drug, visit_num,
mean(fasting_glucose_change) as mean_fasting_glucose_change,
mean(postprandial_glucose_change) as mean_postprandial_glucose_change
from fasting_glucose_change as fgc
join postprandial_glucose_change as pgc
on fgc.usubjid = pgc.usubjid and fgc.visit_num = pgc.visit_num
group by drug, visit_num;
quit;
/* 计算相对基线的变化 */
proc sql;
create table relative_change as
select drug, visit_num,
mean_fasting_glucose_change / min(mean_fasting_glucose_change) as relative_fasting_glucose_change,
mean_postprandial_glucose_change / min(mean_postprandial_glucose_change) as relative_postprandial_glucose_change
from mean_change;
quit;
/* 输出结果 */
proc print data=relative_change;
var drug visit_num relative_fasting_glucose_change relative_postprandial_glucose_change;
run;
```
这段代码会输出药物在不同时间点的空腹血糖和餐后2小时血糖相对于基线的变化,并对药物进行有效性分析。请注意,代码中的路径和表名需要根据实际情况进行修改。
阅读全文