基于深度强化学习的Atari游戏实现
时间: 2024-04-23 09:22:24 浏览: 342
基于深度强化学习的Atari游戏实现是一种非常有趣的研究领域,下面是一个简单的框架实现:
1. 环境配置
首先,需要安装OpenAI Gym和PyTorch等库。然后,需要下载Atari游戏环境,可以使用以下命令:
```
pip install gym[atari]
```
2. 模型定义
定义一个CNN模型,用于处理游戏的图像输入。代码如下:
```
import torch.nn as nn
class DQN(nn.Module):
def __init__(self, num_actions):
super(DQN, self).__init__()
self.conv1 = nn.Conv2d(4, 32, kernel_size=8, stride=4)
self.conv2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self.conv3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self.fc1 = nn.Linear(3136, 512)
self.fc2 = nn.Linear(512, num_actions)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.relu(self.conv2(x))
x = nn.functional.relu(self.conv3(x))
x = x.view(x.size(0), -1)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return x
```
这个模型有三个卷积层和两个全连接层,用于预测每个可能的动作的Q值。
3. 训练过程
使用深度Q学习算法进行训练。首先,需要定义一个经验回放池,用于存储游戏的经验。代码如下:
```
import random
from collections import deque
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = deque(maxlen=capacity)
def push(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def sample(self, batch_size):
batch = random.sample(self.memory, batch_size)
state, action, reward, next_state, done = zip(*batch)
return state, action, reward, next_state, done
def __len__(self):
return len(self.memory)
```
然后,定义一个Agent类,用于执行动作并更新模型。代码如下:
```
import random
import numpy as np
import torch.optim as optim
class Agent(object):
def __init__(self, num_actions, epsilon_start, epsilon_final, epsilon_decay, gamma, memory_capacity, batch_size):
self.num_actions = num_actions
self.epsilon_start = epsilon_start
self.epsilon_final = epsilon_final
self.epsilon_decay = epsilon_decay
self.gamma = gamma
self.memory = ReplayMemory(memory_capacity)
self.batch_size = batch_size
self.policy_net = DQN(num_actions)
self.target_net = DQN(num_actions)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval()
self.optimizer = optim.RMSprop(self.policy_net.parameters())
self.steps_done = 0
def select_action(self, state):
epsilon = self.epsilon_final + (self.epsilon_start - self.epsilon_final) * np.exp(-1.0 * self.steps_done / self.epsilon_decay)
self.steps_done += 1
if random.random() < epsilon:
return random.randrange(self.num_actions)
else:
with torch.no_grad():
return self.policy_net(state).max(1)[1].view(1, 1)
def optimize_model(self):
if len(self.memory) < self.batch_size:
return
states, actions, rewards, next_states, dones = self.memory.sample(self.batch_size)
states = torch.cat(states)
actions = torch.LongTensor(actions).view(-1, 1)
rewards = torch.FloatTensor(rewards).view(-1, 1)
next_states = torch.cat(next_states)
dones = torch.FloatTensor(dones).view(-1, 1)
q_values = self.policy_net(states).gather(1, actions)
next_q_values = self.target_net(next_states).max(1)[0].detach().view(-1, 1)
expected_q_values = (self.gamma * next_q_values * (1 - dones)) + rewards
loss = nn.functional.smooth_l1_loss(q_values, expected_q_values)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def update_target_net(self):
self.target_net.load_state_dict(self.policy_net.state_dict())
```
这个类有select_action、optimize_model和update_target_net三个方法。select_action方法根据当前状态选择一个动作。optimize_model方法用于优化模型。update_target_net方法每隔一段时间更新目标网络。
4. 训练循环
最后,定义一个训练循环,用于执行训练过程。代码如下:
```
def train(env, agent, num_episodes, max_steps):
for i_episode in range(num_episodes):
state = env.reset()
state = torch.from_numpy(state).permute(2, 0, 1).unsqueeze(0).float()
total_reward = 0
for t in range(max_steps):
action = agent.select_action(state)
next_state, reward, done, _ = env.step(action.item())
next_state = torch.from_numpy(next_state).permute(2, 0, 1).unsqueeze(0).float()
reward = torch.tensor([reward], dtype=torch.float32)
agent.memory.push(state, action, reward, next_state, done)
state = next_state
total_reward += reward.item()
agent.optimize_model()
if done:
break
agent.update_target_net()
print('Episode %d, total reward: %d' % (i_episode, total_reward))
```
这个训练循环会执行一定数量的游戏回合,并在每个回合结束后更新模型和目标网络。
这是一个简单的Atari游戏实现的框架,可以根据具体需求进行修改和扩展。
阅读全文