int i = 1; byte b = (int) i;

时间: 2024-05-30 11:12:04 浏览: 4
这段代码中存在一个类型转换,将一个 int 类型的 i 赋值给一个 byte 类型的 b。由于 byte 类型只占用一个字节的存储空间,而 int 类型占用四个字节的存储空间,因此在将 int 类型的值赋值给 byte 类型的变量时,需要进行强制类型转换。在这里,使用了 (int) 进行了强制类型转换,将 int 类型的 i 转换为 byte 类型,然后将转换后的值赋给了变量 b。需要注意的是,如果 i 的值超出了 byte 类型所能表示的范围,那么转换后的值可能会出现截断或溢出。
相关问题

public class BERCodec { public static byte[] encodeInteger(int value) { ByteBuffer buffer = ByteBuffer.allocate(4); buffer.putInt(value); byte[] bytes = buffer.array(); int i = 0; while(i < bytes.length && bytes[i]==0){ i++; } byte[] result = new byte[bytes.length-i+2]; result[0] = 0x02; result[1] = (byte)(bytes.length-i); System.arraycopy(bytes, i, result,2 ,bytes.length-i); return result; } public static int decodeInteger(byte[] data) { int i = data[1]; byte[] s = new byte[4]; System.arraycopy(data,2,s,4-i,i); ByteBuffer wp = ByteBuffer.wrap(s); return wp.getInt(); } public static byte[] encodeOctetString(String value) { byte[] bt = value.getBytes(); byte[] bt1 = new byte[bt.length+2]; bt1[0] = 0x04; bt1[1] = (byte) bt.length; System.arraycopy(bt,0,bt1,2,bt.length); return bt1; } public static String decodeOctetString(byte[] data) { int length = decodeLength(data[1]); return new String(data, 2, length, StandardCharsets.UTF_8); } private static int decodeLength(byte lengthByte) { if ((lengthByte & 0x80) == 0) { return lengthByte; } else { int numBytes = lengthByte & 0x7F; int length = 0; for (int i = 1; i <= numBytes; i++) { length <<= 8; length |= lengthByte & 0xFF; } return length; } } }把编码和解码分开

好的,我来帮你把编码和解码分开: 编码部分: ``` public static byte[] encodeInteger(int value) { ByteBuffer buffer = ByteBuffer.allocate(4); buffer.putInt(value); byte[] bytes = buffer.array(); int i = 0; while(i < bytes.length && bytes[i] == 0) { i++; } byte[] result = new byte[bytes.length - i + 2]; result[0] = 0x02; result[1] = (byte)(bytes.length - i); System.arraycopy(bytes, i, result, 2, bytes.length - i); return result; } public static byte[] encodeOctetString(String value) { byte[] bt = value.getBytes(); byte[] bt1 = new byte[bt.length + 2]; bt1[0] = 0x04; bt1[1] = (byte) bt.length; System.arraycopy(bt, 0, bt1, 2, bt.length); return bt1; } ``` 解码部分: ``` public static int decodeInteger(byte[] data) { int i = data[1]; byte[] s = new byte[4]; System.arraycopy(data, 2, s, 4 - i, i); ByteBuffer wp = ByteBuffer.wrap(s); return wp.getInt(); } public static String decodeOctetString(byte[] data) { int length = decodeLength(data[1]); return new String(data, 2, length, StandardCharsets.UTF_8); } private static int decodeLength(byte lengthByte) { if ((lengthByte & 0x80) == 0) { return lengthByte; } else { int numBytes = lengthByte & 0x7F; int length = 0; for (int i = 1; i <= numBytes; i++) { length <<= 8; length |= lengthByte & 0xFF; } return length; } } ```

int i = 703; byte b1 = (byte)i; System.out.println(b1);结果为什么是-65

在Java中,byte的取值范围是-128到127。当将一个int类型的值转换为byte类型时,如果该值超出了byte类型的取值范围,Java会将该值进行截断处理。 对于703这个整数,它的二进制表示是00000000 00000000 00000010 10111111。由于byte类型只有8位,所以只保留了最后8位,即10111111。在补码表示中,最高位为1表示负数。因此,10111111代表的是一个负数。 根据补码转换为原码的规则,先取反再加1,我们可以得到其原码为11000001。即-65。因此,结果为-65。

相关推荐

检查下面的代码,找出错误病修改:public partial class Form1 : Form { public Form1() { InitializeComponent(); } private void Form1_Load(object sender, EventArgs e) { //以下是正确内容 OpenFileDialog openFileDialog = new OpenFileDialog(); WaveFileReader waveFileReader; DialogResult dialogResult = openFileDialog.ShowDialog(); waveFileReader = new WaveFileReader(openFileDialog.FileName); waveViewer1.WaveStream = waveFileReader; WaveFileChunkReader waveFileChunkReader = new WaveFileChunkReader(); waveFileChunkReader.ReadWaveHeader(waveFileReader); byte[] buffer = new byte[2048]; waveFileReader.Read(buffer, 8, buffer.Length); byte[] halfbuffer = new byte[1024]; // 将buffer1的内容平均除以2并复制到buffer2中 for (int i = 0; i < halfbuffer.Length; i++) { halfbuffer[i] = (byte)(buffer[i * 2] / 2 + buffer[i * 2 + 1] / 2); } //作业:使用GDI+把halfbuffer的数据绘制到panel里去。 } public class chunk { public List<char> ID; public int size; public List<Byte> Data; } private void waveViewer1_Load(object sender, EventArgs e) { } private void panel1_Paint(object sender, PaintEventArgs e) { byte[] halfbuffer = new byte[1024]; // 将buffer1的内容平均除以2并复制到buffer2中 for (int i = 0; i < halfbuffer.Length; i++) { halfbuffer[i] = (byte)(buffer[i * 2] / 2 + buffer[i * 2 + 1] / 2); } Graphics g = e.Graphics; int panelHeight = panel1.Height; int panelWidth = panel1.Width; Pen pen = new Pen(Color.Black); // Calculate the distance between each point float pointDistance = (float)panelWidth / halfbuffer.Length; // Scale the heights so they fit into the panel float heightScaling = (float)panelHeight / 256; // Draw the waveform for (int i = 0; i < halfbuffer.Length - 1; i++) { float x1 = i * pointDistance; float y1 = halfbuffer[i] * heightScaling; float x2 = (i + 1) * pointDistance; float y2 = halfbuffer[i + 1] * heightScaling; g.DrawLine(pen, x1, y1, x2, y2); } } }

最新推荐

recommend-type

java int转byte和long转byte的方法

int i = a.length - 1, j = b.length - 1; for (; i &gt;= 0; i--, j--) { // 从b的尾部(即int值的低位)开始copy数据 if (j &gt;= 0) a[i] = b[j]; else a[i] = 0; // 如果b.length不足4,则将高位补0 } int v0 = (a...
recommend-type

基于java中byte数组与int类型的转换(两种方法)

在Java编程中,将`int`类型转换为`byte`数组以及从`byte`数组还原回`int`类型是常见的操作,特别是在网络编程中。这是因为网络传输的数据通常以字节流的形式存在,而`int`等基本数据类型需要进行适当的序列化才能...
recommend-type

在Java中int和byte[]的相互转换

主要介绍了在Java中int和byte[]的相互转换的相关资料,需要的朋友可以参考下
recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依