用Python写一个MAML算法
时间: 2024-03-27 22:38:40 浏览: 69
以下是一个使用PyTorch实现的简单MAML算法的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
class MAML(nn.Module):
def __init__(self, inner_lr, outer_lr):
super(MAML, self).__init__()
self.inner_lr = inner_lr
self.outer_lr = outer_lr
self.update_step = 5 # 内循环更新次数
# 定义模型
self.model = nn.Sequential(
nn.Linear(1, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x):
return self.model(x)
def inner_update(self, task_data):
# 内循环更新
x, y = task_data
for i in range(self.update_step):
y_pred = self.forward(x)
loss = nn.MSELoss()(y_pred, y)
gradients = torch.autograd.grad(loss, self.parameters(), create_graph=True)
self.update_params(gradients)
def outer_update(self, tasks):
# 外循环更新
meta_gradients = []
for task_data in tasks:
x, y = task_data
y_pred = self.forward(x)
loss = nn.MSELoss()(y_pred, y)
gradients = torch.autograd.grad(loss, self.parameters(), retain_graph=True)
meta_gradients.append(gradients)
# 计算元梯度
meta_gradients = [torch.stack(gradients).mean(dim=0) for gradients in zip(*meta_gradients)]
# 更新模型参数
for param, meta_grad in zip(self.parameters(), meta_gradients):
param.data -= self.outer_lr * meta_grad
def update_params(self, gradients):
# 更新模型参数
params = []
for param, grad in zip(self.parameters(), gradients):
params.append(param - self.inner_lr * grad)
self.load_state_dict(nn.utils.parameters_to_vector(params))
def train(self, tasks, epochs):
# 训练模型
for epoch in range(epochs):
for task_data in DataLoader(tasks, batch_size=1, shuffle=True):
self.inner_update(task_data)
self.outer_update(tasks)
# 测试代码
tasks = [
(torch.tensor([[1.0]]), torch.tensor([[2.0]])),
(torch.tensor([[2.0]]), torch.tensor([[4.0]])),
(torch.tensor([[3.0]]), torch.tensor([[6.0]])),
(torch.tensor([[4.0]]), torch.tensor([[8.0]])),
(torch.tensor([[5.0]]), torch.tensor([[10.0]]))
]
maml = MAML(inner_lr=0.01, outer_lr=0.001)
maml.train(tasks, epochs=100)
# 验证模型
test_data = torch.tensor([[6.0]])
print(maml(test_data)) # 输出应该接近20.0
```
在上面的代码中,我们首先定义了一个简单的线性模型,并在`MAML`类中实现了内循环更新和外循环更新的方法。在`train`方法中,我们通过调用这两个方法来训练模型。在训练过程中,我们使用每个任务的数据来更新模型的参数,并使用所有任务的元梯度来更新模型的参数。最后,我们使用一个简单的测试数据来验证模型的性能。
阅读全文