使用python中的tensorflow2.8.4中的RNN生成更加优美的莎士比亚风格诗句
时间: 2024-03-26 08:34:35 浏览: 79
当然可以!以下是一个使用 TensorFlow 2.8.4 中的 RNN 生成莎士比亚风格诗句的简单示例代码:
```python
import tensorflow as tf
import numpy as np
# 读取莎士比亚全集作为训练数据
with open("shakespeare.txt", "r") as f:
text = f.read()
# 构建字符表
chars = sorted(set(text))
char_to_index = {ch: i for i, ch in enumerate(chars)}
index_to_char = np.array(chars)
# 将文本数据转换为数值序列
text_as_int = np.array([char_to_index[ch] for ch in text])
# 构建训练样本
seq_length = 100
examples_per_epoch = len(text) // (seq_length + 1)
char_dataset = tf.data.Dataset.from_tensor_slices(text_as_int)
sequences = char_dataset.batch(seq_length + 1, drop_remainder=True)
def split_input_target(sequence):
input_text = sequence[:-1]
target_text = sequence[1:]
return input_text, target_text
dataset = sequences.map(split_input_target)
batch_size = 64
buffer_size = 10000
dataset = dataset.shuffle(buffer_size).batch(batch_size, drop_remainder=True)
# 构建模型
vocab_size = len(chars)
embedding_dim = 256
rnn_units = 1024
model = tf.keras.Sequential([
tf.keras.layers.Embedding(vocab_size, embedding_dim),
tf.keras.layers.LSTM(rnn_units, return_sequences=True),
tf.keras.layers.Dense(vocab_size)
])
# 编译模型
model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
# 训练模型
epochs = 30
history = model.fit(dataset, epochs=epochs)
# 生成文本
def generate_text(model, start_string):
num_generate = 1000
input_eval = [char_to_index[ch] for ch in start_string]
input_eval = tf.expand_dims(input_eval, 0)
text_generated = []
temperature = 0.5
model.reset_states()
for i in range(num_generate):
predictions = model(input_eval)
predictions = tf.squeeze(predictions, 0)
predictions = predictions / temperature
predicted_id = tf.random.categorical(predictions, num_samples=1)[-1,0].numpy()
input_eval = tf.expand_dims([predicted_id], 0)
text_generated.append(index_to_char[predicted_id])
return (start_string + "".join(text_generated))
print(generate_text(model, start_string="ROMEO: "))
```
运行该代码后,模型将训练一段时间,然后生成一段以“ROMEO: ”开头的莎士比亚风格的诗句。你可以多次运行该代码,生成不同的诗句。注意,由于数据量较小,生成的诗句可能不够优美。如果你想要生成更加优美的诗句,可以尝试使用更大的训练数据集,调整模型的参数,或者使用其他类型的 RNN 模型。
阅读全文