1、 找出DCGAN中与神经网络训练过程的五个步骤相对应的代码。
时间: 2024-02-13 20:01:59 浏览: 52
训练神经网络的五大算法,算法数据结构
DCGAN (Deep Convolutional Generative Adversarial Network)是一种生成式对抗网络,用于生成逼真的图像。它的神经网络训练过程一般包括以下五个步骤:
1. 定义判别器和生成器的网络结构
2. 定义判别器和生成器的损失函数
3. 在训练过程中,依次训练判别器和生成器
4. 在训练过程中,生成器输出逼真的图像,判别器对真实图像和生成图像进行分类
5. 不断地迭代训练,直至生成的图像足够逼真
这些步骤在代码中的实现如下:
1. 定义判别器和生成器的网络结构
```python
class Discriminator(nn.Module):
def __init__(self, ngpu):
super(Discriminator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input)
class Generator(nn.Module):
def __init__(self, ngpu):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
```
2. 定义判别器和生成器的损失函数
```python
criterion = nn.BCELoss()
# Create batch of latent vectors that we will use to visualize the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
# Establish convention for real and fake labels during training
real_label = 1
fake_label = 0
# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
```
3. 在训练过程中,依次训练判别器和生成器
```python
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
# Update D network: maximize log(D(x)) + log(1 - D(G(z)))
## Train with all-real batch
netD.zero_grad()
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, device=device)
output = netD(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.mean().item()
## Train with all-fake batch
noise = torch.randn(b_size, nz, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
# Update G network: maximize log(D(G(z)))
netG.zero_grad()
label.fill_(real_label) # fake labels are real for generator cost
output = netD(fake).view(-1)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
```
4. 在训练过程中,生成器输出逼真的图像,判别器对真实图像和生成图像进行分类
```python
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
```
5. 不断地迭代训练,直至生成的图像足够逼真
```python
for epoch in range(num_epochs):
# Train D
for i, data in enumerate(dataloader, 0):
# ...
# Train G
for i in range(2):
netG.zero_grad()
noise = torch.randn(batch_size, nz, 1, 1, device=device)
fake = netG(noise)
label.fill_(real_label)
output = netD(fake).view(-1)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
# ...
```
阅读全文